URZĄD MIASTA KRAKOWA
Biuro Planowania Przestrzennego
Pracownia Branżowa

MIEJSCOWY PLAN ZAGOSPODAROWANIA PRZESTRZENNEGO
OSZARU „REJON ULICY KOSZYKARSKIEJ”

OPRACOWANIE EKOFLIZJOGRAFICZNE PODSTAWOWE

KRAKÓW, Marzec 2016
URZĄD MIASTA KRAKOWA
Biuro Planowania Przestrzennego
Pracownia Branżowa

Dyrektor Biura Planowania Przestrzennego:
Bożena Kaczmarska-Michniak

Zastępca Dyrektora
Biura Planowania Przestrzennego:
Elżbieta Szczepińska

Kierownik Pracowni Branżowej:
Paweł Mleczko

Autorzy opracowania:
Agata Budnik
Karolina Kosiba

Część graficzna:
Jadwiga Reczek-Płudowska
(Pracowania Kartografii i Systemów Informacji Przestrzennej)
Agata Budnik
Karolina Kosiba
(Pracownia Branżowa)
I. Część tekstowa

Spis treści

1. Wprowadzenie ... 6
 1.1. Podstawa opracowania ... 6
 1.2. Cel opracowania .. 6
 1.3. Materiały wykorzystane w opracowaniu 6
 1.4. Zakres i metodyka pracy ... 10

2. Diagnoza – charakterystyka stanu i funkcjonowania środowiska ... 11
 2.1. Położenie obszaru ... 11
 2.2. Elementy struktury przyrodniczej 12
 2.2.1. Morfologia i rzeźba terenu 12
 2.2.2. Budowa geologiczna .. 12
 2.2.3. Stosunki wodne ... 14
 2.2.4. Gleby ... 16
 2.2.5. Klimat lokalny .. 17
 2.2.6. Szata roślinna ... 21
 2.2.7. Świat zwierząt .. 25
 2.3. Powiązania przyrodnicze obszaru z otoczeniem 26
 2.4. Główne procesy zachodzące w środowisku oraz naturalne zagrożenia środowiskowe 26
 2.5. Prawne formy ochrony środowiska 29
 2.6. Ewolucja środowiska i skutki zmian w środowisku przyrodniczym .. 31
 2.7. Stan zagospodarowania i użytkowania środowiska przyrodniczego ... 32
 2.8. Źródła antropogenicznych oddziaływań na środowisko ... 33

3. Ocena .. 34
 3.1. Odporność środowiska na antropopresję, zdolność do regeneracji ... 34
 3.2. Ocena zasięgu i rangi barier fizjograficznych i prawnych dla obecnego i przyszłego zagospodarowania ... 35
 3.2.1. Bariery prawne .. 35
 3.2.2. Bariery fizjograficzne .. 37
 3.3. Przydatność środowiska dla realizacji funkcji społeczno-gospodarczych .. 37
 3.4. Jakość środowiska .. 40
 3.4.1. Stan jakości powietrza.. 40
 3.4.2. Klimat akustyczny ... 43
 3.4.3. Stan jakości wód ... 44
3.4.4. Pola elektromagnetyczne ... 44
3.4.5. Wartość krajobrazu .. 45
3.4.6. Zagrożenia środowiska poważną awarią 46
3.5. Ochrona walorów i zasobów przyrodniczych 46
3.6. Zgodność aktualnego użytkowania i zagospodarowania terenu z uwarunkowaniami przyrodniczymi ... 48
3.7. Ocena występowania rzeczywistych sytuacji konfliktowych w środowisku przyrodniczym ... 49
3.8. Waloryzacja przyrodnicza obszaru .. 50
4. Prognoza .. 50
 4.1. Kierunki i natężenie zmian zachodzących w środowisku przyrodniczym pod wpływem aktualnie istniejącego użytkowania i zagospodarowania terenu ... 50
 4.1.1. Zmiany naturalne .. 50
 4.1.2. Zmiany antropogeniczne ... 51
 4.2. Potencjalne sytuacje konfliktowe w środowisku 51
5. Wskazania .. 52
 5.1. Wskazanie możliwości likwidacji i minimalizacji zagrożeń środowiska przyrodniczego ... 52
 5.2. Wskazanie obszarów koniecznych do ochrony prawnej 53
 5.3. Wskazanie obszarów predysponowanych do pełnienia funkcji przyrodniczych ... 54
 5.4. Wskazanie terenów przydatnych do pełnienia różnych funkcji społeczno- gospodarczych, z podaniem stopnia natężenia ich realizacji 54
6. Uwarunkowania ekofizjograficzne – wnioski ... 56

Spis tabel
Tab. 1 Średnie roczne wartości wybranych elementów meteorologicznych (posterunek Kraków – Obserwatorium UJ, Ogród Botaniczny) [20] [21]. ... 18
Tab. 2 Udział procentowy i średnia prędkość wiatrów z różnych kierunków (posterunek Kraków – Obserwatorium UJ, Ogród Botaniczny) [20] [21]. ... 18
Tab. 3. Średnie sezonowe wartości temperatury maksymalnej (t.maks.), minimalnej (t.min.), średniej dobowej (t.śr.) i amplitudy dobowej temperatury (ampl.) (ºC) w różnych punktach Krakowa w dniu doliny Wisły w okresie 03.2009 – 01.2010 r. [22]. ... 20
Tab. 4. Przydatność obszaru opracowania dla rozwoju poszczególnych funkcji społeczno- gospodarczych ... 38
Tab. 5. Ilość przypadków przekroczeń dopuszczalnego poziomu stężenia 24-godzinnego pyłu zawieszonego PM10 w 2014 roku [31]. ... 41
Tab. 6. Średnie roczne stężenia wybranych zanieczyszczeń powietrza dla stacji pomiarowej Kraków-Kurdwanów z lat 2011-2014 [31]. ... 41
Tab. 7. Dopuszczalne poziomy hałasu mogące mieć odniesienie do użytkowania obszaru opracowania na podstawie Rozporządzenia Ministra Środowiska z dnia 14 czerwca 2007 r. w sprawie dopuszczalnych poziomów hałasu w środowisku. ..

Spis rycin
Ryc. 1. Położenie obszaru „Rejon ulicy Koszykarskiej” na tle terenów sąsiadujących [48].
Ryc. 2. Fragment mapy geomorfologicznej obejmującej obszar opracowania [17].
Ryc. 4. Fragment mapy dokumentacyjnej I z opracowania Dokumentacja określająca warunki hydrogeologiczne w związku z piętrzeniem Wisły na stopniu „Dąbie” i regulacją poziomu wód gruntowych w obszarze oddziaływania stopnia „Dąbie” [41] – fragment obejmujący część obszaru opracowania (obszar opracowania znajduje się na wschód od obszaru objętego zmianami stosunków wodnych w związku z pracą bariery odwadniającej).
Ryc. 5. Położenie zwierciadła wody w piętrze czwartorzędowym na obszarze Krakowa – stan prognozowany przy odwadnianiu systemem 37 studni (na podstawie opracowania Dokumentacja określająca warunki hydrogeologiczne w związku z piętrzeniem Wisły na stopniu „Dąbie” i regulacją poziomu wód gruntowych w obszarze oddziaływania stopnia „Dąbie” [41]) – fragment obejmujący część obszaru opracowania.
Ryc. 7. Rozkład kierunków wiatrów – stacja meteorologiczna Kraków – Obserwatorium UJ, Ogród Botaniczny [20].
Ryc. 8. Potencjalny obszar wymiany powietrza, obejmujący znaczną część omawianego obszaru [1].
Ryc. 9. Roślinność rzeczywista obszaru „Rejon ulicy Koszykarskiej”: 1 – łęg wiązowo-jesionowy; 2 – drzewostany na siedliskach łęgowych; 3 – łąki świeże rajgrasowe; 4 – zbiorowiska ugorów i odłogów; 5 – zarośla; 6 – zbiorowiska miejsce wydeptywanych; 7 – siedliska rzeczne; 8 – zieleńce, skwery i zieleń przyuliczna, ogródki jordanowskie; 9 – tereny zainwestowane; 10 – tereny zainwestowane; 11 – ogródki przydomowe [38].
Ryc. 10. Tereny znajdujące się w strefie lasów i zwiększania lesistości [1].
Ryc. 11. Obszar zagrożenia powodziowego, na którym prawdopodobieństwo wystąpienia powodzi jest niskie i wynosi raz na 500 lat (Q 0,2%) [56].
Ryc. 12. Obszar narażony na zalanie w przypadku zniszczenia lub uszkodzenia wału przeciwpowodziowego, przy wyznaczaniu którego przyjęto przepływ o średnim prawdopodobieństwie wystąpienia powodzi wynoszącym raz na 100 lat (Q 1%) – scenariusz całkowitego zniszczenia wałów [56].
Ryc. 13. Porównanie widoku obszaru opracowania na ortofotomapach z lat 1970 i 2015 [47] [48].
Ryc. 14. Śtężeń dwutlenku siarki w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].
Ryc. 15. Stężenie dwutlenku azotu, tlenku azotu oraz ogólnie tlenków azotu w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].

Ryc. 16. Stężenie pyłu zawieszonego PM10 w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].

Ryc. 17. Stężenie pyłu zawieszonego PM2,5 w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].

Ryc. 18. Fragmenty omawianego terenu znajdujące się w strefie kształtowania systemu przyrodniczego (zgodnie ze Studium [1]).

Ryc. 20. Mapa waloryzacji przyrodniczej rejonu obszaru opracowania (na podst. oprac. „Mapa roślinności rzeczywistej miasta Krakowa” [38].

II. Część graficzna
Miejskowy plan zagospodarowania przestrzennego obszaru „Rejon ulicy Koszykarskiej”. Opracowanie ekofizjograficzne podstawowe – skala 1:1000.
1. Wprowadzenie

1.1. Podstawa opracowania

- Sporządzenie miejscowego planu zagospodarowania przestrzennego obszaru „Rejon ulicy Koszykarskiej” podjęte na podstawie uchwały nr CXIX/1884/14 Rady Miasta Krakowa z dnia 22 października 2014 r. w sprawie przystąpienia do sporządzania miejscowego planu zagospodarowania przestrzennego obszaru „Rejon ulicy Koszykarskiej”. Opracowanie planu realizowane w Biurze Planowania Przestrzennego UMK obejmuje także wykonanie opracowania ekofizjograficznego podstawowego.
- Ustawa z dnia 27 kwietnia 2001 r. prawo ochrony środowiska (Dz.U.2013.1232 z późn. zm.)
- Ustawa z dnia 16 kwietnia 2004 r. o ochronie przyrody (Dz.U.2015.1651)
- Ustawa z dnia 27 marca 2003 r. o planowaniu i zagospodarowaniu przestrzennym (Dz.U.2015.199 z późn. zm.),
- Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie opracowań ekofizjograficznych (Dz.U.2002.155.1298)

1.2. Cel opracowania

Opracowanie ekofizjograficzne sporządza się przed podjęciem prac nad projektem miejscowego planu zagospodarowania przestrzennego. Całościowe rozpoznanie poprzez analizę zasobów oraz procesów zachodzących w środowisku ma na celu wskazanie takich rozwiązań w projektowanym planie zagospodarowania przestrzennego, które umożliwią:

- dostosowanie funkcji, struktury i intensywności zagospodarowania przestrzennego do uwarunkowań przyrodniczych,
- zapewnienie trwałości podstawowych procesów przyrodniczych na obszarze objętym planem zagospodarowania przestrzennego,
- zapewnienie warunków odnawialności zasobów środowiska,
- eliminowanie lub ograniczanie zagrożeń i negatywnego oddziaływania na środowisko.

1.3. Materiały wykorzystane w opracowaniu

[4a] Inżynieria Środowiska “Prognoza oddziaływania na środowisko dla obszaru
"Myśliwska" w Krakowie, Kraków 2010r.

[22] A. Bokwa, Wieloletnie zmiany struktury mezoklimatu miasta na przykładzie Krakowa,
MIEJSKOWY PLAN ZAGOSPODAROWANIA PRZestrzennego obszaru „REJON ULICY KOSZYKARSKIEJ”
OPRACOWANIE EKOFIZJOGRAFICZNE PODSTAWOWE

[34] „Pomiary monitoringowe pól elektromagnetycznych na terenie województwa małopolskiego w 2013 roku,” WIOŚ Kraków, Kraków, 2014.

[38] „Mapa roślinności rzeczywistej i wyznaczenie obszarów przyrodniczo najcenniejszych, niezbędnych dla zachowania równowagi ekosystemu miasta,” ProGea Consulting oprac. na zlecenie UMK, Kraków, 2006/07.

[40] Kudłek J. i in., „Koncepcja ochrony różnorodności biotycznej miasta Krakowa,” Instytut
Nauk o Środowisku UJ, Kraków, 2005.

[41] Geoprofil Sp.z.o.o., „Dokumentacja określająca warunki hydrogeologiczne w związku z piętrzeniem Wisły na stopniu „Dąbie” i regulacją poziomu wód gruntowych w obszarze oddziaływania stopnia „Dąbie”,” Kraków, 2005.

Materiały kartograficzne:

[53] Mapy dokumentacyjne osuwisk i terenów zagrożonych ruchami masowymi w skali 1:10000 Miasto Kraków Dzielnice VIII-IX oraz XII-XVIII, Kraków, 2012.
1.4. Zakres i metodyka pracy

Zakres i problematykę opracowania oparto i dostosowano do wymagań dla opracowań ekofizjograficznych, określonych w Rozporządzeniu Ministra Środowiska, przywołanym na wstępie. Całość opracowania odnosi się do obszaru objętego projektem planu, z uwzględnieniem istotnych zewnętrznych relacji z otoczeniem i warunkami na terenach bezpośrednio przyległych do obszaru planu, a także pozostających w związkach ekologicznych i funkcjonalnych. W opracowaniu ekofizjograficznym w wyniku analizy środowiska dokonywane jest rozpoznanie warunków poszczególnych jego elementów pod kątem projektowanych form zagospodarowania terenu. Stanowi to podstawę pełnego rozpoznania i oceny stanu środowiska oraz określenia warunków i prognozy zmian w wyniku postępującej urbanizacji [13].

Zakres opracowania ekofizjograficznego zawiera cztery główne fazy [11]:

- fazę diagnozy – obejmującą: rozpoznanie i charakterystykę środowiska przyrodniczego,
- fazę oceny – obejmującą: analizę informacji przedstawionych w fazie diagnozy z punktu widzenia przyjętych celów ekofizjografii oraz dokonanie waloryzacji zasobów środowiska przyrodniczego w odniesieniu do tych celów, ustalenie przyrodniczej wartości terenu dla konkretnych form oraz sposobów zagospodarowania także ocenę zgodności aktualnego użytkowania i zagospodarowania z uwarunkowaniami przyrodniczymi, a także dotychczasowego zakresu ochrony zasobów i walorów przyrodniczych,
- fazę prognozy – obejmującą: określenie przyszłego stanu środowiska przy założeniu, że dalsze zmiany będą stanowić kontynuację dotychczasowych trendów z uwzględnieniem informacji aktualnego zagospodarowania, stanu i funkcjonowania środowiska,
- fazę wskazań – obejmującą określenie - w wyniku syntezy ustaleń poprzednich faz, szczegółowych wskazań dla potrzeb projektu planu.

Metoda opracowania:

- **Prace terenowe:**
 - Inwentaryzacja istotnych dla obszaru i kierunków polityki przestrzennej, zasobów przyrody, stanu zagospodarowania terenu.
- **Prace studialne:**
 - Analiza materiałów, dokumentów i publikacji o charakterze ogólnym i szczegółowym w odniesieniu do omawianego obszaru i jego sąsiedztwa,
 - Analiza materiałów kartograficznych dostępnych w Internetowym Systemie Danych Przestrzennych Urzędu Miasta Krakowa,
 - Analiza założeń zawartych w Studiu Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Krakowa,
 - Identyfikacja i ocena zaobserwowanych zmian w środowisku,
 - Identyfikacja i ocena elementów zagospodarowania mogących mieć wpływ na środowisko,
 - Opracowanie wskazań ekofizjograficznych wynikających z przeprowadzonych analiz.
2. Diagnoza – charakterystyka stanu i funkcjonowania środowiska

2.1. Położenie obszaru

Położenie administracyjne

Zdecydowana większość analizowanego terenu znajduje się w obrębie obowiązującego miejscowego planu zagospodarowania przestrzennego „Myśliwska”, który został przyjęty uchwałą z dnia 20 października 2010 roku. Pozostały niewielki fragment (zachodni kraniec terenu) należy do obszaru objętego obowiązującym miejscowym planem „Trasa Nowopłaszowska”, przyjętym uchwałą z dnia 11 października 2006 roku.

Położenie geograficzne

- według regionalizacji fizyczno – geograficznej [14]: w obrębie prowincji – Karpaty Zachodnie z Podkarpackiem, podprowincji – Północne Podkarpacie, makroregionu – Kotlina Sandomierska, mezoregionu – Nizina Nadwiślańska,
- według regionalizacji geomorfologicznej [16]: na terenie sterasowanego dna pradoliny Wisły (poziom teras niskich),
- według regionalizacji mezoklimatycznej [21]: w regionie równiny teras niskich dna doliny Wisły.

Ryc. 1. Położenie obszaru „Rejon ulicy Koszykarskiej” na tle terenów sąsiadujących [48].
2.2. Elementy struktury przyrodniczej

2.2.1. Morfologia i rzeźba terenu

Pod względem geomorfologicznym obszar opracowania stanowi fragment sterasowanego dna pradoliny Wisły. Zalicza się on do poziomu teras niskich. Wysokości bezwzględne w obszarze wahają się od ok. 200 m n.p.m., obniżają się w kierunku koryta Wisły [55]. W obrębie analizowanego terenu nie występują spadki większe lub równe 12%.

Zgodnie z Atlasem geologiczno-inżynierskim [17] omawiany teren znajduje się w zasięgu równiny tarasów akumulacyjnych, a w jego północno-zachodniej części przebiega fragment starorzecza Wisły.

Ryc. 2. Fragment mapy geomorfologicznej obejmującej obszar opracowania [17].

Ukształtowanie terenu „Ogrodu Płaszów” (część środkowa obszaru) jest zróżnicowane. W jego obrębie wyróżnić można skarpy, leje – pozostałości starorzecza, cieku wodnego będącego w przeszłości dopływem Wisły, a także sztucznie uformowane nasypy – związane z infrastrukturą podziemną [42].

2.2.2. Budowa geologiczna

Pod względem geologicznym cały rozpatrywany obszar należy do dna doliny rzeki Wisły, wyznaczanego przez zasięg teras niskich uformowanych w najmłodszym plejstocenie i holocenie [4].

Charakterystyka warunków geologicznych została omówiona w opracowaniu ekofizjograficznym sporządzonym w 2007 roku dla miejscowego planu zagospodarowania przestrzennego obszaru „Myśliwska” [4]:
Podłoże podczwartorzędowe stanowią na rozpatrywanym terenie utwory miocenu morskiego zapadliska przedkarpackiego. Są to głównie iły i ły pylaste, z wkładkami glin, piasków gliniastych, pyłów i piasków pylastych. Z wierceń archiwalnych wynika, że zalegają one tutaj na głębokościach 9-13 m p.p.t., co odpowiada rzędnym ok. 188-188,5 m n.p.m. (z nieznaczonym spadkiem wzdłuż biegu doliny).

W obrębie poziomu madowego zaznaczają się różnorodne formy starorzeczy. Stosunkowo najlepiej zachowana taka forma przebiega na wschód od dawnego portu rzecznego i obejmuje ciasnym łukiem całą południowo-zachodnią część terenu opracowania [objętego mpzp „Myśliwska”, a obecnie projektem planu „Rejon ulicy Koszykarskiej” i „Rejon ulicy Przewóz”].

Ryc. 3. Fragment Szczegółowej mapy geologicznej Polski [46] obejmujący część obszaru opracowania (Qh – holocen, terasa niska Wisły; q̄h – piaski i żwiry rzeczne, Qb – iły i mułki starorzeczy, Q4 – piaski i żwiry rzeczno-peryglacjalne, M – miocen morski; gęstą ciemną szrafurą zaznaczone są tereny nasypowe).
W miejscach dawnych starorzeczy pokrywa madowa bywa zredukowana do ok. 1,5-3 m, a w płytkim podłożu występują ły i mulki jeziorne, którym zazwyczaj towarzyszą grunty organiczne. Rzędne tereny są tam niższe, a woda gruntowa występuje płycej, aniżeli na okolicznych terenach.

W głębszym profilu czwartorzędowym – aż do stropu ilów miocenu na głębokości 9-13 m p.p.t. (na terenach nasypowych odpowiednio głębiej) – występują piaski, pospółki i żwiry rzeczne. Sekwencja gruntów obejmuje holoceńskie piaski i żwiry rzeczne, pod którymi zalegają piaski i żwiry rzeczno-peryglacjalne plejstocenu. Łączna miąższość kompleksu wynosi od kilku do kilkunastu metrów, przy czym w górnych partiach dominują piaski, a w głębszych utworzy żwirowe.

Zgodnie z Atlasem geologiczno-inżynierskim [17] warunki budowlane omawianego obszaru są w większości mało korzystne (ze względu na grunty nośne oraz w mniejszym stopniu słabonośne, z wodami podziemnymi na głębokości od 1 m p.p.t. do 2 m p.p.t.). Na kilku niewielkich powierzchniach w obrębie terenu zidentyfikowano płycej położone wody podziemne, co przekłada się na niekorzystne warunki budowlane. Podobna sytuacja ma miejsce w pasie wzdłuż Wisły – tam jednak jest to związane z występowaniem gruntów nienośnych (z wodami podziemnymi na głębokości od 1 m p.p.t.).

2.2.3. Stosunki wodne

Wody powierzchniowe

Wody podziemne

Ryc. 4. Fragment mapy dokumentacyjnej I z opracowania Dokumentacja określająca warunki hydrogeologiczne w związku z piętrzeniem Wisły na stopniu „Dąbie” i regulacją poziomu wód gruntowych w obszarze oddziaływania stopnia „Dąbie” [41]) – obszar opracowania znajduje się na wschód od obszaru objętego zmianami stosunków wodnych w związku z pracą bariery odwadniającej.
Ryc. 5. Położenie zwierciadła wody w piętrze czwartorzędowym na obszarze Krakowa – stan prognozowany przy odwadnianiu systemem 37 studni (na podstawie opracowania Dokumentacja określająca warunki hydrogeologiczne w związku z piętrzeniem Wisły na stopniu „Dąbie” i regulacją poziomu wód gruntowych w obszarze oddziaływania stopnia „Dąbie” [41]) – fragment obejmujący część obszaru opracowania.

Sypływ wód podziemnych na analizowanym terenie odbywa się w kierunku koryta Wisły i jej międzywala. Główny poziom wodonośny w utworach czwartorzędowych utrzymuje się na poziomie nieco wyższym lub zbliżonym do poziomu wody w Wiśle, na zróżnicowanych głębokościach 2-5 m p.p.t. [4].

Wody podziemne są słabo chronione przed wpływami powierzchniowymi przez warstwę półprzepuszczalnych mad (gliny pylaste i pyły) o zmiennej grubości – od ok. 1-1,5 m do ponad 5 m [4].

2.2.4. Gleby

W obszarze opracowania zidentyfikowano trzy jednostki glebowe [2]:

– tereny zabudowane oraz gleby urbanglebowe i gleby ogrodowe (Urbisols, Hortisols) – Urbanoziemy są utworami glebowymi obszarów zabudowanych oraz terenów wolnych od zabudowy, gdzie wyburzono stare budynki lub dawne urządzenia fortyfikacyjne. Gleby ogrodowe są utworami wzbogacanymi w materię organiczna pochodzącą z tzw. ziem
ogrodniczych m.in. z kompostów. Kształtowane są przez właścicieli pod kątem wymagań uprawianych tam krzewów i warzyw.
Obejmują znaczną część obszaru – na zachodnie, w centrum oraz w niewielkim stopniu w południowo-wschodnim krańcu.

– gleby zmienione przez przemysł (Technosols) – należą do utworów glebowych zniekształconych przez działalność przemysłową i transportową. Obejmują niewielki fragment na południu obszaru.

2.2.5. Klimate lokalne

Masy powietrza

Kraków znajduje się w strefie klimatu umiarkowanego przejściowego, który charakteryzuje się zmiennością pogody. Klimat Krakowa w przeważającej części kształtuję się pod wpływem mas powietrza polarno-morskiego, które napływają nad Polskę południową średnio przez około 57% dni w roku. W zimie masy te powodują ocieplenie, odwilże, opady i zwiększenie zachmurzenia, a latem ochłodzenie i przelotne, intensywne opady. Powietrze polarno-kontynentalne (około 21% dni w roku) cechuje się niską wilgotnością względną, z tego wynika niewielkie zachmurzenie. W lecie napływa ono, jako powietrze ciepłe, a w zimie, jako chłodne. Jesienią i zimą adwekcja powietrza polarno-kontynentalnego powoduje inwersje temperatury i zamglenia. Pozostałe masy powietrza znacznie rzadziej napływają w rejon Krakowa, ze względu jednak na bardzo odmienne właściwości odgrywają dużą rolę w kształtowaniu klimatu lokalnego. Udział mas powietrza arktycznego wynosi około 8% z maksimum w kwietniu, sprzyja wypromieniowaniu ciepła i powoduje silne
inwersje i spadki temperatury powodujące np.: wiosenne przymrozki. Powietrze zwrotnikowe (około 3%) powoduje upały i parność w lecie, a w zimie nagle ocieplenia i odwilże. Około 10% dni w roku charakteryzuje się napływem co najmniej dwóch różnych mas powietrza [20] [21].

Wartości wybranych elementów meteorologicznych

Wykorzystane dane pochodzą ze stacji meteorologicznej Kraków – Obserwatorium UJ (φ=50°04’, λ= 19°58’; 205,7 m n.p.m.) położonej w odległości ok. 2 km na północny zachód od obszaru opracowania. Dane z tej stacji są bardziej reprezentatywne niż dane ze stacji Kraków – Balice (φ=50°05’, λ= 19°48’; 237 m n.p.m.) przede wszystkim, ze względu na odległość od omawianego obszaru. Zaznacza się jednak, że klimat omawianego terenu może nieznacznie różnić się od tego panującego w Ogrodzie Botanicznym.

Tab. 1 Średnie roczne wartości wybranych elementów meteorologicznych (posterunek Kraków – Obserwatorium UJ, Ogród Botaniczny) [20] [21].

<table>
<thead>
<tr>
<th>Element meteorologiczny</th>
<th>Wartość</th>
<th>Okres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usłonecznienie</td>
<td>1523,4</td>
<td>1901-2000</td>
</tr>
<tr>
<td>Opad atmosferyczny</td>
<td>668 mm</td>
<td>1951-1995</td>
</tr>
<tr>
<td>Temperatura powietrza</td>
<td>8,5°C</td>
<td>1956-1995</td>
</tr>
<tr>
<td></td>
<td>8,7°C</td>
<td>1901-2000</td>
</tr>
<tr>
<td>Prędkość wiatru</td>
<td>1,5 m/s</td>
<td>1981-1995</td>
</tr>
</tbody>
</table>

Tab. 2 Udział procentowy i średnia prędkość wiatrów z różnych kierunków (posterunek Kraków – Obserwatorium UJ, Ogród Botaniczny) [20] [21].

<table>
<thead>
<tr>
<th>Kierunek wiatru</th>
<th>Okres</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
<th>Cisze</th>
<th>Suma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udział [%]</td>
<td>1971-2000</td>
<td>5.6</td>
<td>5.7</td>
<td>13.8</td>
<td>2.3</td>
<td>4.2</td>
<td>10.7</td>
<td>29.0</td>
<td>4.5</td>
<td>24.2</td>
<td>100 %</td>
</tr>
<tr>
<td></td>
<td>1981-1995</td>
<td>3.6</td>
<td>7.7</td>
<td>9.0</td>
<td>3.4</td>
<td>2.5</td>
<td>19.5</td>
<td>20.8</td>
<td>6.6</td>
<td>26.9</td>
<td>100 %</td>
</tr>
<tr>
<td>Średnia prędkość [m/s]</td>
<td>1971-2000</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.7</td>
<td>2.3</td>
<td>2.5</td>
<td>2.1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1981-1995</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.7</td>
<td>2.3</td>
<td>2.5</td>
<td>2.1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Tab. 3. Średnie sezonowe wartości temperatury maksymalnej (t.maks.), minimalnej (t.min.), średniej dobowej (t.śr.) i amplitudy dobowej temperatury (ampl.) (°C) w różnych punktach Krakowa w dnie doliny Wisły w okresie 03.2009 – 01.2010 r. [22].

<table>
<thead>
<tr>
<th>S.</th>
<th>wiosna</th>
<th>lato</th>
<th>jesień</th>
<th>zima</th>
</tr>
</thead>
<tbody>
<tr>
<td>TŚ</td>
<td>TS</td>
<td>Ma</td>
<td>Kr</td>
<td>Po</td>
</tr>
<tr>
<td>t. maksi.</td>
<td>18,0</td>
<td>19,0</td>
<td>19,4</td>
<td>20,6</td>
</tr>
<tr>
<td>t. mini.</td>
<td>7,0</td>
<td>5,1</td>
<td>6,9</td>
<td>6,5</td>
</tr>
<tr>
<td>Śr.</td>
<td>12,5</td>
<td>11,9</td>
<td>13,0</td>
<td>13,1</td>
</tr>
<tr>
<td>AMPL.</td>
<td>11,0</td>
<td>13,8</td>
<td>12,5</td>
<td>14,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.</th>
<th>wiosna</th>
<th>lato</th>
<th>jesień</th>
<th>zima</th>
</tr>
</thead>
<tbody>
<tr>
<td>TŚ</td>
<td>TS</td>
<td>Ma</td>
<td>Kr</td>
<td>Po</td>
</tr>
<tr>
<td>t. maksi.</td>
<td>26,6</td>
<td>26,9</td>
<td>27,4</td>
<td>28,5</td>
</tr>
<tr>
<td>t. mini.</td>
<td>15,7</td>
<td>13,8</td>
<td>15,7</td>
<td>15,4</td>
</tr>
<tr>
<td>Śr.</td>
<td>20,8</td>
<td>19,8</td>
<td>21,1</td>
<td>21,3</td>
</tr>
<tr>
<td>AMPL.</td>
<td>10,6</td>
<td>13,1</td>
<td>11,7</td>
<td>13,1</td>
</tr>
</tbody>
</table>

W zimie różnice między stacjami były najmniejsze, zaś wiosną i latem największe. Widoczne jest, że w zachodniej części doliny tereny o różnej zabudowie (zabudowa blokowa, zabudowa willowa, kanion miejski, zwarta zabudowa śródmieścia) mają bardzo zbliżone wartości średniej temperatury dobowej. Drugą grupę punktów, o niższych wartościach temperatury, tworzą tereny zielone, akweny wodne i zabudowa blokowa we wschodniej części doliny. Podobną prawidłowość można stwierdzić, porównując wartości temperatury minimalnej dla poszczególnych stacji i pór roku.

Mezoklimat

Według regionalizacji mezoklimatycznej obszar opracowania znajduje się w zasięgu równiny teras niskich dna doliny Wisły, która charakteryzuje się krótkim okresem bezprzymrozkowym, największą liczbą dni gorących i upalnych oraz największą amplitudą temperatury, a także najmniejszą sumą opadów. Wiatr w tych terenach jest najsłabszy, a procent cisz oraz liczba dni z mgłą największe [16].

Zgodnie z waloryzacją klimatyczną przeważa część Krakowa, w tym również obszar opracowania, położona jest na terenach o niekorzystnych warunkach klimatycznych, w dnie doliny Wisły i jej dopływów. Ponadto niewielkie fragmenty terenu przy południowej granicy znajdują się w zasięgu mikroklimatu terenów mieszkaniowych (południowy zachód) oraz mikroklimatu terenów przemysłowych (południowy wschód) [21].

Podkreśla się, że zgodnie ze *Studium* [1] znaczna część analizowanego terenu stanowi potencjalny obszar wymiany powietrza.
2.2.6. Szata roślinna

Zgodnie z przedstawionym poniżej fragmentem „Mapy roślinności rzeczywistej” na większości obszaru „Rejon ulicy Koszykarskiej” występują spontaniczne zbiorowiska ruderalne, tereny zainwestowane lub ogródki przydomowe. Najcenniejszym zbiorowiskiem roślinnym jest łęg wiązowo-jesionowy.
W obrębie rozpatrywanego obszaru wykonano trzy zdjęcia fitosocjologiczne, jednak nie zostały zidentyfikowane chronione gatunki roślin [39]. Poniżej przedstawiono krótką charakterystykę wydzielonych zbiorowisk roślinności rzeczywistej.

Lasy liściaste siedlisk wilgotnych

- **Łęg wiązowo-jesionowy** (1) – zajmuje siedliska bardzo żyzne i wilgotne. Drzewostan w tym zespole tworzą wiązy. Jest mniej rozpowszechniony na terenie Krakowa niż łęg jesionowo-olszowy – w przypadku omawianego terenu występuje we wschodniej części obszaru, wzdłuż rzeki Wisły. W jego obrębie wykonano zdjęcie fitosocjologiczne – najbardziej licznie występował podagrycznik pospolity (*Aegopodium podagraria*), bez czarny (*Sambucus nigra*) i wiąz szypułkowy (*Ulmus laevis*).

Zbiorowisko łęgu wiązowo-jesionowego wyszczególnione jest w Rozporządzeniu Ministra Środowiska z dnia 13 kwietnia 2010 r. w sprawie siedlisk przyrodniczych oraz gatunków będących przedmiotem zainteresowania Wspólnoty, a także kryteriów wyboru obszarów kwalifikujących się do uznania lub wyznaczenia jako obszary Natura 2000 (kod siedliska: 91E0).

Inne drzewostany

- **Drzewostany na siedliskach lęgów** (2) – leśne zbiorowiska zastępcze powstałe przez wykonanie nasadzeń na obszarze dawnych gruntów rolnych, przede wszystkim wilgotnych ląk. Zajmują niewielką powierzchnię w północnej części terenu, a w ich obrębie wykonano zdjęcie fitosocjologiczne – można wymienić takie gatunki występujące w obrębie tego wydzielenia jak: jeżyna popielica (*Rubus caesius*), bodziszek łąkowy (*Geranium pratense*), kupkówka pospolita (*Dactylis glomerata*), rajgras wyniosły (*Arrhenatherum elatius*), głóg jednoszyjkowy (*Crataegus monogyna*), wierzba biała (*Salix alba*), topola kanadyjska (*Populus x euroamericana*).

Roślinność ląk i pastwisk

- **Łąki świeże rajgrasowe** (3) – należą do najcenniejszych pod względem gospodarczym. Rozwijają się na madach i glebach brunatnych o umiarkowanej wilgotności. Rozwijają się na terasach zalewowych rzek, lokalnych wyniosłościach terenu i wałach przeciwpowodziowych. Zajmują niewielką powierzchnię w zachodniej części terenu.

Spontaniczne zbiorowiska ruderalne

- **Zbiorowiska ugorów i odłogów** (4) – rozwijają się na przydrożach, nieużytkowanych polach i łąkach, placach, rumowiskach, terenach kolejowych itp. Mają dość znaczny udział, przede wszystkim na północy i zachodzie obszaru. W ich obrębie wykonano zdjęcie fitosocjologiczne – najliczniej występującymi gatunkami był wówczas podagrycznik pospolity (*Aegopodium podagraria*), ostrożeń polny (*Cirsium arvense*), bodziszek łąkowy (*Geranium pratense*).

- **Zarośla** (5) – związane są z początkowym stadium wtórnej sukcesji leśnej na opuszczenych polach i łąkach. Zlokalizowane są na kilku powierzchniach w różnych częściach obszaru.
- **Zbiorowiska miejsce wydeptywanych** (6) – są to zbiorowiska przede wszystkim antropogeniczne, związane z intensywnym wydeptywaniem terenu przez ludzi (ale także przez zwierzęta). Zajmują niewielką powierzchnię w centrum obszaru.

Kompleks pól uprawnych

- **Zbiorowiska pól uprawnych** (7) – siedliska typowo antropogeniczne, związane ze stałą działalnością człowieka. Położone jedynie w południowo-wschodniej części omawianego terenu.

Zieleń urządzoną

- **Zieleńce, skwery i zieleń przyuliczna, ogródki jordanowskie** (8) – stanowią zieleń urządzoną obszaru opracowania, przede wszystkim w części środkowej.

- **Ogródki działkowe i sady** (9) – są to dobrze zagospodarowane tereny, głównie z uprawą roślin ozdobnych. Zlokalizowane głównie w północno-zachodnim krańcu terenu.

Inne wydzielenia – mają dość duży udział w całym analizowanym obszarze, przede wszystkim w jego części południowej i środkowej.

- **Tereny zainwestowane** (10).

- **Ogródki przydomowe** (11).

Do gatunków występujących w obszarze opracowania przy obecnym charakterze zagospodarowania (tereny zainwestowane oraz zieleń urządzoną w postaci ogródków działkowych oraz skwerów i zieleni przyulicznej) można zaliczyć (zgodnie z opracowaniem z 2007 r. [4]) takie gatunki jak: skrzyp polny (*Equisetum arvense*), przymiotno gałęziste (*Erigeron ramosus*), ostróżeń polny (*Cirsium arvense*), dziurawiec zwyczajny (*Hypericum perforatum*), lucerna nerkowata; koniczyna żółta (*Medicago lupulina*), koniczyna łąkowa (*Trifolium pratense*), biedrzeniec mniejszy (*Pimpinella saxifraga*), bylica pospolita (*Artemisia vulgaris*), babka lancetowata (*Plantago lanceolata*), wiechlina łąkowa (*Poa pratensis*), kupkówka pospolita (*Dactylis glomerata*). Ponadto ogródki działkowe charakteryzują się znacznym zróżnicowaniem pod względem roślinności.

Roślinność terenu parku rzecznego „Ogród Płaszów” jest zróżnicowana pod względem gatunkowym, wysokościowym i wiekowym. Wskazać można występowanie takich gatunków jak m.in. [42]:

- wiąz szpulkowy (*Ulmus laevis*), brzoza brodawkowata (*Betula pendula*), głóg jednoszyjkowy (*Crataegus monogyna*), orzech włoski (*Juglans regia*) – rosziewające się naturalnie gatunki ekspansywne;

- wierzba biała (*Salix alba*), jesion wyniosły (*Fraxinus excelsior*), bez czarny (*Sambucus nigra*) – gatunki charakterystyczne dla zieleni łągowej, występujące w sąsiedztwie pozostałości starorzecza;
gatunki ozdobne: świerk (*Picea*), cis (*Taxus*); owocowe: wiśnia (*Cerasus*), jabłoń (*Malus*); obce: sumak (*Rhus*) – wprowadzone w rejonie pozostałości koryta rzeki przy ul. Lasówka i zabudowie jednorodzinnej;

- topole kanadyjskie (*Populus xeuramericana*) – rosnące w formie pasa wzdłuż ogrodzenia szkoły przy ul. Myśliwskiej;
- topole włoskie (*Populus 'Italica'*), pojedyncze egzemplarze topoli białej (*Populus alba*) i topoli osiki (*Populus tremula*) – występujące przede wszystkim w części centralnej;
- lipa drobnolistna (*Tilia cordata*), dąb czerwony (*Quercus rubra*), modrzew europejski (*Larix decidua*), czeremcha pospolita (*Prunus padus*) – dość licznie występujące;
- bez czarny (*Sambucus nigra*) – dominujący w grupie krzewów; dęber biały (*Cornus alba*), forsycja (*Forsythia*), ozdobne odmiany tawuł (*Spiraea*).

Pas we wschodniej części obszaru znajduje się, zgodnie ze Studium [1], w *strefie lasów i kształtowania lesistości*. Zgodnie z ustaleniami Studium przed zalesianiem terenów zielonych zaleca się jednak analizę celowości zalesienia, gdyż nie na każdym obszarze (w obrębie strefy) wskazane jest wprowadzanie zieleni wysokiej.

![Ryc. 10. Tereny znajdujące się w strefie lasów i zwiększania lesistości [1].](image)

W przypadku obszaru strefa ta pokrywa się w przeważającej części z obszarem szczególnego zagrożenia powodzią, obejmuje również wał przeciwpowodziowy. Wg *praw wodnego* Art. 88l. Na obszarach szczególnego zagrożenia powodzią zabrania się wykonywania robót oraz czynności utrudniających ochronę przed powodzią lub zwiększających zagrożenie powodziowe, w tym; *sadzenia drzew lub krzewów*, z wyjątkiem plantacji wiklinowych na potrzeby regulacji wód oraz roślinności stanowiącej element zabudowy biologicznej dolin rzecznych lub służącej do wzmacniania brzegów, obwałowań lub odsypisk. Zakaz sadzenia drzew lub krzewów dotyczy również wałów oraz terenu w odległości 3m od stopy wału po stronie odpowiedniej;
2.2.7. Świat zwierząt

Tereny objęte granicami sporządzanego planu stanowią w części siedlisko chronionych gatunków zwierząt w rozumieniu ustawy o ochronie przyrody. Największe ich bogactwo występuje wzdłuż rzeki Wisły, a także na terenach ogrodów działkowych oraz terenach w rejonie ul. Lasówka. Wisła i obszar międzywalów stanowi miejsce gniazdowania m.in. zimorodka, szeregu gatunków ptaków zespołów nadrzecznych oraz miejsce zimowania łabędzi i kaczek. Na całym miejskim odcinku Wisły zaobserwowano występowanie łabędzia krzykliwego, łyski, czernicy, głowienki, kormorana, mewy pospolitej, srebrzystej i białogłowej. Stwierdzono również występowanie takich rzadkości jak mewa trójpalczasta, mewa żółtonoga, nur czarnoszyi, świnut, kaczka krakwa, ogorzałka [4]. Ostatniej na obszarze krajobrazu wzmocniona przez fragment roślinności łęgowej w rejonie następnie Wisły. Tereny wzdłuż Wisły oraz pozostające w zasięgu połączeń ekologicznych są również miejscem występowania gatunków lownych [43].

Wg informacji, która wpłynęła do Wydziału Kształtowania Środowiska UMK w listopadzie 2015r w południowo zachodniej części obszaru wzdłuż wałów przeciwpowodziowych po południowej stronie rzeki Wisy (Pomieślice i Lasówka) zaobserwowane zostało występowanie chronionych gatunków modraszków oraz rośliny pokarmowej tych motyli krwiściągu lekarskiego. Informacja ta nie została zweryfikowana, brak jest również danych dotyczących liczebności (skali występowania) populacji, niemniej charakter siedliska wskazuje na możliwość zasiedlania przez te gatunki.

Zgodnie z informacją zawartą w projekcie budowlano-wykonawczym „Budowa parku rzecznego Ogród Płaszów Etap II” w rejonie projektowanego parku stwierdzono występowanie takich gatunków ptaków jak: dzięcioł zielony (Picus viridis), dzięcioł duży (Dendrocopos major), kwieciół (Turds pilaris), paszkat (Turds viscivorus), zięba (Fringilla coelebs), kos (Turds merula), rudzik (Erithacus rubecula) [42].

W obrębie terenów zabudowanych występują gatunki zwierząt zasiedlające tego typu tereny w sposób naturalny – w przypadku obszaru opracowania są to przede wszystkim ptaki: wróble, sroki, kosy, wrony i in., a także typowe drobne zwierzęta – owady i gryzonie. Korzystają one ze środowisk zurbanizowanych, jako miejsce rozrodu i regularnego przebywania. Miejsca te to w głównej mierze drzewa i krzewy, trawniki, jak również budynki.

Na terytorium Krakowa stwierdzono występowanie szeregu chronionych gatunków fauny. Pośród nich na szczególną uwagę zasługują gatunki najrzadsze, a szczególnie te, których przetrwanie jest związane z ochroną specyficznych siedlisk. Ochrona tych gatunków przyczynia się do ochrony całych zespołów roślinnych i zwierzęcych. W „Ekofizjografii do zmiany Studium” (Mapa cennych siedlisk i korytarzy ekologicznych) [2], wskazano najcenniejsze gatunki fauny, występującej w Krakowie w obrębie wyróżnionych obszarów. Wśród gatunków chronionych wymieniono jedynie te najrzadsze i najbardziej zagrożone według kryteriów „Polskiej czerwonej księgi zwierząt”, „Polskiej czerwonej listy zwierząt” oraz będące przedmiotem szczególnego zainteresowania (ochrony) w skali Europy - wymienione w I Załączniku Dyrektywy Ptasinej, II i IV Załączniku Dyrektywy Siedliskowej Unii Europejskiej. W granicach obszaru w wydzieraniu o nazwie Łęg Wiślany (nr 65) (tereny nad Wisłą) jako najcenniejsze gatunki wskazano:

- zimorodek Alcedo atthis,
- gąsiorek Lanius collurio,
- ortolan Emberiza hortulana,
Podane wyżej trzy gatunki ptaków wyszczególnione są w załączniku I tzw. „Dyrektywy Ptasiej” - Dyrektywa Parlamentu Europejskiego i Rady 2009/147/WE z dnia 30 listopada 2009 r. w sprawie ochrony dzikiego ptactwa (wersja ujednolicona) - Dz.U.UE L z dnia 26 stycznia 2010 r., 10.20.7 (PL).

2.3. Powiązania przyrodnicze obszaru z otoczeniem

Najistotniejszą lokalną drogą migracji wewnątrz obszaru, zapewniającą powiązania z sąsiednimi terenami (w kierunku południowym poprzez m.in. ogrody działkowe w stronę zalewu Bagry) są zachowane tereny zieleni pomiędzy ul. Lasówka i Gumniska. Ważne, aczkolwiek mniej istotne są lokalne połączenia i „sięgacze” na terenach dotychczas niezabudowanych.

W skali regionalnej i lokalnej korytarze ekologiczne i ich kontynuacja poza obszarem planu, warunkują zachowanie ciągłości systemu przyrodniczego miasta i znajdują poparcie w przepisach dotyczących ochrony zwierząt: ustawy z dnia 16 kwietnia 2006 r. o ochronie przyrody, ustawy z dnia 13 października 1995 r. Prawo łowieckie (j.t. Dz. U. z 2013 r., poz. 1226 z późn. zm.), rozporządzenia Ministra Środkowiska z dnia 6 października 2014 r. w sprawie ochrony gatunkowej zwierząt (Dz. U. poz. 1348).

2.4. Główne procesy zachodzące w środowisku oraz naturalne zagrożenia środowiskowe

Procesy zachodzące w środowisku

Naturalnym procesem zachodzącym na analizowanym terenie jest zjawisko sukcesji wtórnej. Jest to proces relatywnie szybko zachodzący i łatwo zauważalny, spowodowany przez czynniki antropogeniczne – przekształcenie naturalnego zbiorowiska, a następnie zarzucenie gospodarowania. Proces ten zmierza do ponownego wykształcenia zbiorowiska
roślinnych charakterystycznych dla warunków siedliskowych danego obszaru (warunki klimatyczne, glebowe, stosunki wodne i in.).

Istnienie i funkcjonowanie ogródków działkowych, wiązające się z wykonywaniem pewnych prac bądź wprowadzaniem do środowiska m.in. nawozów, może również powodować zmiany w glebie czy wpływać na roślinność tych rejonów.

Na terenie opracowania zachodzą także procesy naturalne przebiegające bardzo powoli, niezauważalnie dla człowieka. Są to np. zmiany właściwości i parametrów poziomów glebowych. Procesy te mogą podlegać modyfikacjom (nasileniu, spowolnieniu, zmianie kierunku) na skutek działalności człowieka.

Narocne zagrożenia

Teren objęty planem nie jest zagrożony wystąpieniem ruchów masowych. Znajduje się natomiast w obszarze zagrożenia powodzią.

Wschodnią granicę obszaru stanowi rzeka Wisła. W odległości ok. 150 do 300m od jej brzegów wybudowany został wał przeciwpowodziowy. Zgodnie z ustawą Prawo wodne między linią brzegu a wałem przeciwpowodziowym znajduje się obszar szczególnego zagrożenia powodzią. Według „Map zagrożenia powodziowego i map ryzyka powodziowego” [56] sporządzonych przez Prezesa Krajowego Zarządu Gospodarki Wodnej wody powodziowe o prawdopodobieństwie wystąpienia raz na 10 lat (Q 10%) oraz 100 lat (Q 1%) mieszczą się w międzywalu.

W przypadku powodzi o prawdopodobieństwie wystąpienia raz na 500 lat (Q 0,2%) możliwe jest przelanie się wód przez wał przeciwpowodziowy, w kilku miejscach wału (ryc. 11). Zasięg wylewu w przypadku powodzi Q0,2% nie został przedstawiony na mapach zagrożenia powodziowego, na podstawie rzędnych zaznaczonych w korycie rzeki woda ta może sięgać ok. 202 m n.p.m.
Ryc. 11. Obszar zagrożenia powodziowego, na którym prawdopodobieństwo wystąpienia powodzi jest niskie i wynosi raz na 500 lat (Q 0,2%) [56].

W przypadku zniszczenia lub uszkodzenia wału przeciwpowodziowego w scenariuszu całkowitego zniszczenia wałów – dla przepływu o średnim prawdopodobieństwie wystąpienia powodzi wynoszącym raz na 100 lat (Q 1%) – na zalanie narażony jest w zasadzie cały obszar. Prawdopodobna głębokość załaniania może wynosić nawet powyżej 4 m (przede wszystkim w północno-zachodniej części terenu). W środkowej i północno-zachodniej części może wynosić także od 2 m do 4 m, natomiast dla większości terenu mieści się w przedziale 0,5÷2 m. Zwierciadło wody podczas powodzi może osiągnąć rzędne do wartości ok. 201,28÷202,04 m n.p.m.
Ryc. 12. Obszar narażony na zalanie w przypadku zniszczenia lub uszkodzenia wału przeciwpowodziowego, przy wyznaczaniu którego przyjęto przepływ o średnim prawdopodobieństwie wystąpienia powodzi wynoszącym raz na 100 lat (Q 1% – scenariusz całkowitego zniszczenia wałów [56]).

W przypadku przerwania wału przeciwpowodziowego (hipotetyczne miejsce przerwania: Wisła 838,500 km, prawy brzeg) na zalanie jest narażona większość wschodniej części terenu – rzędna zwierciadla wody może wówczas sięgnąć ok. 200,5 m n.p.m. Przy wyznaczaniu tego obszaru także przyjęto przepływ o średnim prawdopodobieństwie wystąpienia powodzi wynoszącym raz na sto lat (Q1%).

2.5. Prawne formy ochrony środowiska

Ochrona środowiska przyrodniczego

Na obszarze opracowanie nie występują obszarowe formy ochrony przyrody ani też nie planuje się ich ustanowienia, natomiast występują tu siedliska chronionych gatunków zwierząt w rozumieniu ustawy o ochronie przyrody oraz rozporządzenia Ministra Środowiska z dnia 6 października 2014 r. w sprawie ochrony gatunkowej zwierząt (Dz. U. poz. 1348). Są to siedliska związane z występującą na obszarze zielenią.
Z powyższego wynikają określone zakazy i ograniczenia, które winny zostać uwzględnione w procesie inwestycyjnym, zwłaszcza w sytuacjach prowadzących do zmiany przeznaczenia względem dotychczasowego sposobu użytkowania terenu. Zmiany te mogą być uzależnione od możliwości uzyskania ewentualnych odstępstw od obowiązujących zakazów, przy czym należy dążyć do maksymalnej ochrony siedlisk zwierząt chronionych.

Pozostałym wyżej omawianą ochroną gatunkową zwierząt, inne formy ochrony przyrody w rozumieniu art. 6 ust.1 ustawy z dnia 16 kwietnia 2004 r. o ochronie przyrody (j.t. Dz. U. z 2013 r. poz. 627 z późn. zm.), w tym pomniki przyrody, w granicach sporządzanego planu nie występują.

W opracowaniu p.t. „Koncepcja ochrony różnorodności biotycznej Krakowa” [40] w obszarze opracowania nie wyznaczono obiektów proponowanych do objęcia ochroną. Najbliższymi takimi obszarami są:

- „Zalew Bagry” zaproponowany do ochrony w formie użytku ekologicznego. Położony w kierunku południowym ok. 0,5 km od ulicy Lipskiej. Zajmuje on obszar o powierzchni 75,79 ha obejmujący zalew o brzegach porośniętych szuwarem trzciny i pałkowym. Zbiornik jest zarybiony. Stanowi największą ostój lęgowych ptaków wodnych w Krakowie i jedynie ten zbiornik zapewnia warunki dla migrujących dużych gatunków takich jak nury i gęsi. Wypłycenia południowej części zbiornika stanowią też unikalne miejsce postoju i żerowania ptaków brodzących. Pas szuwarów wzdłuż południowego brzegu zbiornika stanowi miejsce gnieżdżenia i odpoczynku wielu gatunków ptaków wodnych.

- „Staw Płaszowski” zaproponowany do ochrony w formie użytku ekologicznego. Położony w kierunku południowo-zachodnim ok. 0,74 km od ulicy Saskiej. Zajmuje on obszar o powierzchni 17,83 ha obejmujący stawy i łąki podmokłe. Zbiornik ten posiada bogatą i zróżnicowaną awifaunę. Gnieździ się tu szereg gatunków wodnych i szuwarowych.

W listopadzie 2015 do UMK Wydziału Kształtowania Środowiska wpłynął wniosek osoby prywatnej o objęcie ochroną fragmentu obszaru w rejonie wałów wiślnianych, gdzie zaobserwowane zostały chronione gatunki motyli modraszków. Ochrona środowiska kulturowego

Zgodnie z informacją zawartą we wniosku Miejskiego Konserwatora Zabytków UMK do sporządzanego projektu planu, w obszarze „Rejon ulicy Koszykarskiej” położony jest obiekt zabytkowy – wpisany do rejestru zabytków pod nr A-1102 decyzją z 12.04.1999 r. i objęty ochroną konserwatorską dawny spichlerz zbudowany w 1805 r., który stanowi

- Strefy ochrony konserwatorskiej wg Studium [1]
 Analizowany teren został uwzględniony przy wyznaczaniu stref ochrony konserwatorskiej.
 - Strefa ochrony wartości kulturowych (integracji) – obejmuje nieduży fragment w centrum obszaru.
 - Strefa ochrony i kształtowania krajobrazu – obejmuje całość obszaru opracowania.

Ponadto, w poprzek terenu (z południowego - zachodu na północny - wschód) przebiega oś powiązań widokowych pomiędzy Kopcem Krakusa a Kopcem Wandy [1].

2.6. Ewolucja środowiska i skutki zmian w środowisku przyrodniczym

W 1784 r. osadzie Podgórze nadano prawa wolnego miasta królewskiego, a następnie przeprowadzono regulację urbanistyczną. W późniejszym czasie Podgórze przyłączono do Austrii, jednak w 1809 r. zostało włączone razem z Krakowem do Księstwa Warszawskiego i zaczęło pełnić funkcję jego IV Dzielnicy. Po kongresie wieńckich znów stało się odrębnym miastem na terenie Austrii. W 1846 r. Kraków został również wcielony do Austrii, a Podgórze, wciąż jako osobne miasto, trafiało w obręb „Twierdzy Kraków”. W roku 1914 wydana została ustawa o połączeniu miasta z Krakowem.

Na obecnym terenie Dzielnicy znalazły się także m.in. dawne wsie Przewóz i Rybitwy. Początki przewozu związane są z wytyczeniem traktu solnego z Wieliczki do Mogiły. Rybitwy notowane są w źródłach od XIV w., a włączone je do Krakowa w 1941 r. [23].

W latach 70. obszar opracowania w dużej mierze wykorzystywy był rolniczo – dotyczy to w zasadzie całej części wschodniej obszaru, a także fragmentów pozostałej części. Na południowym zachodzie zlokalizowana była także zabudowa istniejąca wówczas w obszarze – przede wszystkim obiekty mieszkalne jednorodzinne, które w większości istnieją do dziś.
2.7. Stan zagospodarowania i użytkowania środowiska przyrodniczego

Obszar opracowania jest zainwestowany przede wszystkim w części zachodniej oraz południowej. Istniejącą zabudowę stanowią głównie budynki jednorodzinne (w południowo-zachodniej części terenu; przy ul. Koszykarskiej, Myśliwskiej, Gumniska, Lasówka) oraz wielorodzinne (w części zachodniej, środkowej oraz południowo-wschodniej; przy ul. Koszykarskiej, Wincentego Turka, Lasówka, Myśliwskiej). Ponadto można wyróżnić obiekty o charakterze usługowym (w części środkowej oraz na południu; m.in. Małopolski Ośrodek Ruchu Drogowego, Hotel Krakus, przedszkole i szkoła podstawowa), a także usługowo-produkcyjnym i magazynowym (na południowym wschodzie) [5].

Wzdłuż wschodniej granicy opracowania przepływa rzeka Wisła, której fragment znajduje się w granicach planu. Tereny zieleni mają znaczy udział w obszarze – można wśród nich wyróżnić zarówno zielenie nieurządzoną, jak i urządzoną. Składają się na to ogródki działkowe na północnym zachodzie obszaru (Rodzinny Ogród Działkowy „Płaszów”), a także tereny zaliczone do parków rzecznych (wschodnia część opracowania), w tym międzywale i teren przeznaczony pod park rzeczny „Ogród Płaszów”.

Park Płaszów położony jest na terenie Dzielnicy XIII Podgórze, przy ul. Myśliwskiej, Lasówka i Gumniska. Część znajdującą się w obrębie obszaru opracowania została oddana w trwały zarząd Gminy Miejskiej Kraków, jako przeznaczona do budowy parku rzecznego pn.”Ogród Płaszów” (decyzja nr GS-02.MG.72244-3-9/05 z dnia 13.07.2010 r.) [24]. Teren parku charakteryzuje się dużymi grupami zwartej zieleni, a części w części centralnej sporymi otwartymi przestrzeniami (pozostawionymi bez nasadzeń ze względu na przebiegające pod ziemią instalacje – MPEC i MPWiK) [42]. W części nieobjętej trwałym zarządem (na południe od terenu objętego opracowaniem) wykonano w 2010 r. budowę ogródka zabawowego z wydzieloną częścią dla małych dzieci (plac zabaw) oraz z częścią przeznaczoną dla dorosłych (stoliki do gry w szachy) [24].

Sieci i urządzenia infrastruktury technicznej występujące w obszarze zaspokajają potrzeby odbiorców w tym rejonie a także ponadlokalnie. Rozmieszczone są na całym analizowanym terenie do wałów Wisły. Poprzez tereny międzywały i Wisłę przeprowadzona jest magistrala cieplownicza i wodociągowa a także linia elektroenergetyczna.
Z sieci o znaczeniu ponadlokalnym przez obszar opracowania przebiega linia elektroenergetyczna wysokiego napięcia 110 kV, rurociąg ciepłowniczy c 2x 800 mm Krzecionki-Mistrzejowice (planowana jest także druga nitka sieci magistralnej Krzemionki – Mistrzejowice) oraz kolektor kanalizacji ogólnospławnjej ko 4500x4000. Wzdłuż sieci infrastruktury występują ograniczenia w zabudowie i użytkowaniu terenu, w przypadku wymienionych ważnych elementów sieci ograniczenia dotyczą pasów terenu o stosunkowo dużej zajętości.

2.8. Źródła antropogenicznych oddziaływań na środowisko

Na kształt środowiska przyrodniczego mają wpływ zarówno naturalne procesy chemiczne, biologiczne i fizyczne, jak i procesy zachodzące w wyniku działalności człowieka – oddziaływania antropogeniczne. W wyniku tych procesów środowisko ulega licznom przekształceniom.

Na analizowanym obszarze można obserwować skutki antropopresji – zwłaszcza w jego zachodniej i południowej części, w której skupia się większość zainwestowań. W mniejszym stopniu wpływ działalności człowieka może dotyczyć terenów niezainwestowanych – przede wszystkim wschodniej (w tym międzywala). Oddziaływania związane są w dużej mierze z istnieniem ciągów komunikacyjnych i ruchem pojazdów, ale także z rozwojem zabudowy. Pokrywa glebowa i roślinność w północno-zachodniej części obszaru zostały również przekształcone w pewnym stopniu poprzez prace wykonywane w obrębie ogródków działkowych. Dodatkowo wpływać na środowisko w tym rejonie mogą źródła zlokalizowane poza obszarem – chodzi przede wszystkim o stopień zainwestowania sąsiednich terenów i pojawianie się nowej zabudowy, co pociąga za sobą także wzrost intensywności ruchu pojazdów i większą emisję zanieczyszczeń.

W związku z powyższym można wskazać następujące oddziaływania na środowisko pochodzenia antropogenicznego:

- Zanieczyszczenie środowiska gruntowo-wodnego – zagrożenie dla czystości wód i gleb w obszarze opracowania może wynikać z funkcjonowania ciągów komunikacyjnych. Ruch pojazdów powoduje emisję m.in. metali cząsteczkowych, węglowodorów. Dodatkowe zanieczyszczenia wiążą się z utratą komunikacyjną, zwłaszcza w okresie zimowym, przez co zwiększa się zasolenie w pobliżu drog i chodników.

w rejonie ul. Nowohuckiej, a także częściowo ogródków działkowych. Dokładne informacje na ten temat znajdują się w rozdziale 3.4.2. Klimat akustyczny.

- Zmniejszenie powierzchni biologicznie czynnej, ploszenie zwierząt – zwiększanie stopnia zainwestowania terenu pociąga za sobą niszczenie zbiorowisk roślinności i pokrywy glebowej. Niekorzystny wpływ mogą odczuć również zwierzęta, dla których istniejąca roślinność stanowi siedlisko. Ponadto zwierzęta mogą być ploszone w trakcie prac budowlanych oraz późniejszego użytkowania obszaru, a ciągi komunikacyjne są trudną do pokonania barierą, co może przekładać się na wzrost śmiertelności niektórych gatunków zwierząt. Zmniejszanie powierzchni biologicznie czynnej może wpływać także na lokalny klimat.

- Zaprzestanie rolniczego użytkowania terenu – prowadzi do występowania zjawiska sukcesji wtórnej, przez którą zmianie ulega skład gatunkowy roślin, co wpływa również na warunki siedliskowe zwierząt.

- Zaśmiecenie – w obszarze opracowania występują tereny zielone, które są szczególnie narażone na możliwość zaśmiecenia, co obniża walory estetyczne oraz może skutkować przedostawaniem się zanieczyszczeń do środowiska gruntowo-wodnego.

3. Ocena

3.1. Odporność środowiska na antropopresję, zdolność do regeneracji

Odporność środowiska na antropopresję oznacza trwałość systemu (np. fragmentu środowiska) w warunkach niezmiennej ochrony oraz zdolność do powrotu do stanu oryginalnego po zakończeniu oddziaływania zakłócających czynników zewnętrznych. Odnosi się do konkretnego rodzaju oddziaływania na środowisko, w związku z czym środowisko może być równocześnie bardzo odporne na działanie jednego czynnika, a mało odporne na wpływ innego. Przeciwieństwem odporności jest wrażliwość. Do oceny odporności środowiska na działalność człowieka bierze się pod uwagę jego strukturę i funkcjonowanie, aktualny stan zagospodarowania i użytkowania terenu, a także skutki działalności człowieka [12]. Cała przeprowadzona ocena pozwala ustalić, które elementy środowiska są najmniej odporne, dzięki czemu łatwiej jest podjąć odpowiednie środki ochrony.

Drugim istotnym pojęciem jest zdolność środowiska do regeneracji, czyli powrotu do stanu zbliżonego do tego, który występował, zanim pojawia się presja. Znajomość przyszłych reakcji środowiska na antropopresję jest kluczowa, jeżeli chce się z dużym prawdopodobieństwem ocenić zdolność środowiska do regeneracji [12].

Odporność elementów środowiska w obszarze opracowania:

- **Szata roślinna** – na omawianym terenie nie występują chronione gatunki roślin. W terenach silnie przekształconych lub częściowo zniszczonych w zależności od przyrodniczym składu roślinności jest mało odporne w zasadzie tylko w przypadku powstania nowej zabudowy, co wiąże się z niszczeniem pokrywy roślinnej. Szata roślinna ogródków działkowych i pozostałych cennych przyrodniczo terenów, a zwłaszcza tych o wysokich walorach ekologicznych, charakteryzuje się mniejszą odpornością.

- **Fauna** – świat zwierząt charakteryzuje się zróżnicowaną odpornością, w zależności od indywidualnych wymagań konkretnego gatunku. Gatunki o większej tolerancji dostosowują się do zmieniających się warunków. Wrażliwość gatunków chronionych jest natomiast dużo większa. Zdolność do regeneracji w przypadku fauny również jest kwestią złożoną, uzależnioną też od zdolności siedlisk do regeneracji.
Gleby – w przypadku powstawania nowej zabudowy jest to element mało odporny, a regeneracja w zasadzie jest niemożliwa. Gleby narażone są na negatywne oddziaływanie szczególnie w sąsiedztwie dróg. Odporność gleb na przenikające do niej zanieczyszczenia jest ograniczona, a czas regeneracji jest uzależniony od ilości i charakteru emitowanych substancji, a także typu gleby.

Powietrze – obszar opracowania charakteryzuje się niekorzystnymi warunkami klimatycznymi ze względu na swoje położenie w dnie doliny Wisły, ponadto pozostaje pod wpływem zanieczyszczeń, m.in. komunikacyjnych lub pochodzących z niskiej emisji. W związku z tym odporność tego elementu nie jest bardzo duża, choć wschód częstego obszaru znajduje się w zasięgu potencjalnego obszaru wymiany powietrza [1], co może sprzyjać jego regeneracji w tym rejonie. W przypadku ustania czynników negatywnych powietrze wraca dość szybko do stanu pierwotnego.

Wody – zagrożenie dla wód związane jest przede wszystkim z zanieczyszczeniami pochodzącymi z ciągów komunikacyjnych. Zdolność wód do regeneracji zależy będzie przede wszystkim od ilości i rodzaju występujących zanieczyszczeń. Na stosunki wodne obszaru może wpływać w pewnym stopniu położenie w sąsiedztwie bariery odwadniającej (co omówiono w rozdziale 2.2.3. Stosunki wodne).

Mikroklimat – jest wrażliwy przede wszystkim na ograniczenie powierzchni biologicznie czynnej. Jej zmniejszanie skutkuje wzrostem temperatury w przyziemnej warstwie atmosfery. W przypadku ustania działania czynników wpływających na zmiany mikroklimatu, może on dość szybko ulec regeneracji.

Krajobraz – w części zainwestowanej obszaru element ten jest bardziej odporny niż w terenach zielonych. Dla terenów niezainwestowanych największe zmiany w zakresie krajobrazu może przynieść pojawienie się nowej zabudowy (nie ma wtedy w zasadzie możliwości regeneracji), a także zmiany w szacie roślinnej (które są w większym stopniu odwraconej).

Ukształtowanie terenu – obszar opracowania charakteryzuje się niewielkimi spadkami i małym zróżnicowaniem terenu, w związku z czym jest to element bardzo odporny. Teren nie jest również zagrożony wystąpieniem ruchów masowych, które mogłyby zmieniać jego ukształtowanie.

3.2. Ocena zasięgu i rangi barier fizjograficznych i prawnych dla obecnego i przyszłego zagospodarowania

3.2.1. Bariery prawne

Ochrona gatunkowa

W obszarze opracowania występują chronione gatunki zwierząt (zgodnie z Rozporządzeniem Ministra Środowiska z dnia 6 października 2014 r. w sprawie ochrony gatunkowej zwierząt – patrz rozdział 2.2.7 Świat zwierząt). Zgodnie z Ustawą o ochronie przyrody ochrona gatunkowa obejmuje okazy gatunków oraz ich siedliska i ostoje.
Ochrona zabytków

Na analizowanym obszarze zlokalizowany jest obiekt wpisany do rejestru zabytków. Ponadto teren objęty jest strefą ochrony konserwatorskiej (rozdział 2.5 Prawne formy ochrony środowiska). Zgodnie z Ustawą z dnia 23 lipca 2003 r. o ochronie zabytków i opiece nad zabytkami nad zabytkami przy sporządzaniu miejscowych planów zagospodarowania przestrzennego uwzględnia się ochronę zabytków i opiekę nad zabytkami. W szczególności:

- uwzględnia się krajowy program ochrony zabytków i opieki nad zabytkami;
- określa się rozwiązania niezbędne do zapobiegania zagrożeniom dla zabytków, zapewnienia im ochrony przy realizacji inwestycji oraz przywracania zabytków do jak najlepszego stanu;
- ustala się przeznaczenie i zasady zagospodarowania terenu uwzględniające opiekę nad zabytkami.

Ochrona zabytków polega na podejmowaniu przez organy administracji publicznej działań mających na celu m.in.: zapobieganie zagrożeniom mogących spowodować uszkodzenie dla wartości zabytków oraz uwzględnianie zadań ochronnych w planowaniu i zagospodarowaniu przestrzennym oraz przy kształtowaniu środowiska.

Ochrona przed powodzią

Według ustawy Prawo wodne art. 88f ust. 5 w miejscowych planach zagospodarowania przestrzennego można uwzględniać przedstawione na mapach zagrożenia powodziowego oraz mapach ryzyka powodziowego granice następujących obszarów:

- na których prawdopodobieństwo wystąpienia powodzi jest niskie i wynosi raz na 500 lat lub na których istnieje prawdopodobieństwo wystąpienia zdarzenia ekstremalnego,
- szczególnego zagrożenia powodzią:
 - na których prawdopodobieństwo powodzi jest średnie i wynosi raz na 100 lat,
 - na których prawdopodobieństwo wystąpienia powodzi jest wysokie i wynosi raz na 10 lat,
 - między linią brzegu a wałem przeciwpowodziowym lub naturalnym wysokim brzegiem, w którym wbudowano trasę wału przeciwpowodziowego, a także wyspy, przymuliska,
- obejmujące tereny narażone na zalanie w przypadku zniszczenia lub uszkodzenia wału przeciwpowodziowego.

Obszar opracowania obejmuje między innymi tereny położone wzdłuż wału przeciwpowodziowego Wisły. Zgodnie z art. 88n ustawy z dnia 18 lipca 2001 r. Prawo wodne w celu zapewnienia szczelności i stabilności wałów przeciwpowodziowych zabrania się m.in.:

- uprawy gruntu, sadzenia drzew lub krzewów na wałach oraz w odległości mniejszej niż 3 m od stopy wału po stronie odpowietrznej;
- wykonywania obiektów budowlanych, kopania studni, sadzawek, dołów oraz rowów w odległości mniejszej niż 50 m od stopy wału po stronie odpowietrznej.

Zgodnie z Prawem wodnym (art. 88l) ograniczenia (zakazy wykonywania robót) dotyczą obszarów szczególnego zagrożenia powodzią – w obrębie opracowania jest to teren międzywału Wisły.

Dokumentem, który powinien być wzięty pod uwagę w pracach jest Lokalny Plan Ograniczana Skutków Powodzi i Profilaktyki Powodziowej dla Krakowa, przyjęty uchwałą nr LXVI/554/00 Rady Miasta Krakowa z dnia 6 grudnia 2000 roku. W zakresie zagospodarowania przestrzennego określa on, że jednym z działań powinno być uwzględnianie problematyki ochrony przed powodzią w polityce przestrzennej –
w miejscowych planach zagospodarowania przestrzennego poprzez zapisy i ustalenia ograniczające możliwość realizacji: budownictwa mieszkalnego wysokiej intensywności oraz obiektów mogących stanowić zagrożenie (magazyny chemiczne, obiekty gospodarki odpadami itp.) na terenach zalewowych (Q1%).

Ochrona przed PEM

Przez obszar opracowania przebiega dwutorowa napowietrzna sieć elektroenergetyczna wysokiego napięcia 110 kV. Dopuszczalne poziomy pól elektromagnetycznych zostały określone w Rozporządzeniu Ministra Środowiska w sprawie dopuszczalnych poziomów pól elektromagnetycznych w środowisku oraz sposobów sprawdzania dotrzymania tych poziomów.

Dla ochrony przed oddziaływaniem PEM oraz dla potrzeb eksploatacji linii wymagane jest zachowanie wzdłuż niej strefy wolnej od zabudowy. Zgodnie ze wskazaniami Tauron Dystrybucja S.A. wzdłuż linii 110 kV powinno się przyjąć strefę techniczną o szerokości 40 m (po 20 m z każdej strony osi linii, a dodatkowo na terenach zadrzewionych należy utrzymać pas wycinki po 12 m z każdej strony osi linii), w obrębie której możliwość zabudowy należy uzgodnić z właścicielem sieci.

3.2.2. Bariery fizjograficzne

Warunki budowlane

Analizowany teren charakteryzuje się występowaniem mało korzystnych lub niekorzystnych warunków budowlanych. Związane jest to przede wszystkim z poziomem występowania wód podziemnych (na głębokości od 1 m p.p.t. do 2 m p.p.t. lub nawet płycej), grunty nienośne zidentyfikowane zostały jedynie w pasie terenu wzdłuż Wisły [17].

Hałas

W obszarze opracowania przekroczenia norm z Rozporządzenia Ministra Środowiska w sprawie dopuszczalnych poziomów hałasu w środowisku odnotowano jedynie przy ul. Nowohuckiej i ul. Saskiej. Wynikają one z hałasu komunikacyjnego. Szczegółowe informacje na ten temat znajdują się w rozdziale 3.4.2. Klimat akustyczny.

Zagrożenie powodziowe

W zasadzie cały omawiany obszar znajduje się w zasięgu zagrożenia powodziowego. Problematykę tę przedstawiono w rozdziale 2.4. Główne procesy zachodzące w środowisku oraz naturalne zagrożenia środowiskowe.

3.3. Przydatność środowiska dla realizacji funkcji społeczno-gospodarczych

Przydatność obszaru opracowania do realizacji funkcji społeczno-gospodarczych określana jest na podstawie informacji o cechach i funkcjonowaniu środowiska, istniejących barierach prawnych i fizjograficznych oraz dotychczasowym zagospodarowaniu terenu.

Obszar opracowania jest obecnie zróżnicowany pod względem stopnia i charakteru zainwestowania. Jego wschodnia część, w tym teren międzyważy Wisły, stanowi powierzchnię zieloną, podobnie jak zlokalizowany w części centralnej park rzeczny „Ogród Płaszów”. W północno-zachodnim krańcu terenu znajduje się także fragment Rodzinnego Ogrodu Działkowego „Płaszów”. Wymienione tereny znalazły się w strefie kształtowania systemu przyrodniczego wyznaczonej w Studium [1], dla której przy planowaniu zagospodarowania powinno się brać pod uwagę ochronę wartości i zasobów przyrodniczych.

W zakresie roślinności we wschodniej części opracowania zidentyfikowano zbiorowisko lęgu wiązowo-jesionowego, które charakteryzuje się najwyższymi walorami przyrodniczymi oraz niewielką powierzchnię ląk świeżych rajgrasowych o wysokich

Strona 37
walorach przyrodniczych. Ponadto pozostałe tereny na wschodzie obszaru oraz ogródkи działkowe określone zostały jako cenne pod względem przyrodniczym [38].

 Ważnym uwarunkowaniem jest położenie rzeki Wisły (części jej koryta) w granicach opracowania. Niesie to ze sobą zarówno pozytywne, jak i negatywne skutki (wałem przeciwpowodziowym przebiega ciąg widokowy, ale także skutkuje zagrożeniem powodziowym na całym analizowanym terenie). Część obszaru opracowania (przede wszystkim międzywyżej a „Ogród Płaszów”) mieści się również w zasięgu terenów wskazanych w Studium [1] jako parki rzeczne, które wymagają ochrony przed zabudową i uznania je za trwałe zielone struktury w przestrzeni miasta.

Analizowany teren jest również w dużym zakresie zainwestowany. Na istniejącą zabudowę składają się zarówno budynki mieszkaniowe jednorodzinne i wielorodzinne, jak również obiekty o charakterze usługowym, usługowo-produkcyjnym i magazynowym. Funkcje te mogą w dalszym ciągu się rozwijać, jednak uwarunkowani niesprytająń czynnikom powstawaniu nowej zabudowy są niekorzystne lub mało korzystne warunki budowlane [17], a także zagrożenie powodziowe [56]. Ponadto podczas kształtowania zagospodarowania korzystne byłoby uwzględnianie wspomnianych warunków przyrodniczych.

Biorąc pod uwagę przedstawione uwarunkowania obszaru, można stwierdzić, że jest on predysponowany do pełnienia zarówno funkcji mieszkaniowej i usługowej, jak i rekreacyjno-wypoczynkowej. Tereny zielone w północnej i wschodniej części opracowania, park rzeczny „Ogród Płaszów”, a także ogródkи działkowe uznaje się za przydatne do wykorzystania w celach rekreacyjnych i wypoczynkowych dla okolicznych mieszkańców i innych użytkowników obszaru (w połączeniu z pełnieniem funkcji przyrodniczej, w celu zachowania walorów obszaru). Tereny obecnie zainwestowane predysponowane są do pełnienia funkcji mieszkaniowej lub usługowej, w zależności od obecnego stopnia zainwestowania – np. w rejonie obecnej zabudowy jednorodzinnej wskazane byłoby zachowanie niższej intensywności zabudowy.

O przydatności terenów dla realizacji określonych funkcji decydują również inne czynniki, niewymienione wyżej, a wynikające z uwarunkowań fizjograficznych i środowiskowych. Zidentyfikowane uwarunkowania (sprzyjające i niesprzyjające), które wpływają na przydatność terenów dla wytypowanych dla obszaru funkcji, wymienione są w poniższej tabeli.

<p>| Tab. 4. Przydatność obszaru opracowania dla rozwój poszczególnych funkcji społeczno-gospodarczych. |
|----------|---|---|
| Funkcja | Uwarunkowania sprzyjające | Uwarunkowania niesprzyjające |
| mieszkańowa | - zainwestowanie w zachodniej i południowej części terenu | - mało korzystne lub niekorzystne warunki budowlane |
| | - istniejąca zabudowa mieszkaniowa | - zagrożenie powodziowe |
| | - sąsiedztwo obszarów o znacznym stopniu zainwestowania | - niekorzystne warunki klimatyczne |
| | - dobre powiązania komunikacyjne | - występowanie terenów o najwyższych i wysokich walorach przyrodniczych, a także cennych pod względem przyrodniczym |
| | - stosunkowo niewielka odległość od centrum miasta | - położenie części obszaru w zasięgu parku rzecznego wyznaczonego w Studium |
| | - tereny ogródków działkowych | |</p>
<table>
<thead>
<tr>
<th>Mieszkaniowa, cd.</th>
<th>Usługowa</th>
<th>Przemysłowa</th>
<th>Rekreacyjno-wypoczynkowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>- park „Ogród Płaszów” położony w części środkowej obszaru sąsiedztwo Wisły</td>
<td>- zainwestowanie w zachodniej i południowej części terenu</td>
<td>- zainwestowanie w zachodniej i południowej części terenu</td>
<td>- występowanie terenów o najwyższych i wysokich walorach przyrodniczych, a także cennych pod względem przyrodniczym</td>
</tr>
<tr>
<td>- położenie w niewielkiej odległości Zalewu Bagry</td>
<td>- istniejąca na części terenu zabudowa usługowa, produkcyjna i magazynowa</td>
<td>- istniejąca na części terenu zabudowa usługowa, produkcyjna i magazynowa</td>
<td>- występowanie terenów o najwyższych i wysokich walorach przyrodniczych, a także cennych pod względem przyrodniczym</td>
</tr>
<tr>
<td>- sieci i urządzenia infrastruktury technicznej rozmieszczone są na całym obszarze</td>
<td>- sąsiedztwo obszarów o znacznym stopniu zainwestowania</td>
<td>- sąsiedztwo obszarów o znacznym stopniu zainwestowania</td>
<td>- położenie części obszaru w zasięgu parku rzecznego wyznaczonego w Studium</td>
</tr>
<tr>
<td>- mało zróżnicowane ukształtowanie terenu</td>
<td>- dobre powiązania komunikacyjne</td>
<td>- sieci i urządzenia infrastruktury technicznej rozmieszczone są na całym obszarze</td>
<td>- ogródki działkowe</td>
</tr>
<tr>
<td>- większość terenu znajduje się poza zasięgiem znaczących oddziaływań akustycznych</td>
<td>- stosunkowo niewielka odległość od centrum miasta</td>
<td>- mało zróżnicowane ukształtowanie terenu</td>
<td>- park „Ogród Płaszów” położony w części środkowej obszaru</td>
</tr>
<tr>
<td>- znaczną część obszaru ma tylko przeciętne walory przyrodnicze lub jest silnie przekształcona</td>
<td>- znaczną część obszaru ma tylko przeciętne walory przyrodnicze lub jest silnie przekształcona</td>
<td>- znaczną część obszaru ma tylko przeciętne walory przyrodnicze lub jest silnie przekształcona</td>
<td>- zainwestowanie w zachodniej i południowej części terenu, istniejąca zabudowa</td>
</tr>
<tr>
<td>- mało korzystne lub niekorzystne warunki budowlane</td>
<td>- pogoda powodziowa</td>
<td>- mało korzystne lub niekorzystne warunki budowlane</td>
<td>- sąsiedztwo obszarów o znacznym stopniu zainwestowania</td>
</tr>
<tr>
<td>- zagrożenie powodziowe</td>
<td>- występowanie terenów cennych pod względem przyrodniczym</td>
<td>- zagrożenie powodziowe</td>
<td>- położenie części obszaru w zasięgu parku rzecznego wyznaczonego w Studium</td>
</tr>
<tr>
<td>- występowanie terenów o najwyższych i wysokich walorach przyrodniczych, a także cennych pod względem przyrodniczym</td>
<td>- występowanie terenów cennych pod względem przyrodniczym</td>
<td>- występowanie terenów cennych pod względem przyrodniczym</td>
<td>- ogródki działkowe</td>
</tr>
<tr>
<td>- położenie części obszaru w zasięgu parku rzecznego wyznaczonego w Studium</td>
<td>- położenie części obszaru w zasięgu parku rzecznego wyznaczonego w Studium</td>
<td>- położenie części obszaru w zasięgu parku rzecznego wyznaczonego w Studium</td>
<td>- park „Ogród Płaszów” położony w części środkowej obszaru</td>
</tr>
<tr>
<td>- tereny ogródków działkowych, cenne pod względem przyrodniczym</td>
<td>- ogródki działkowe</td>
<td>- ogródki działkowe</td>
<td>- zainwestowanie w zachodniej i południowej części terenu, istniejąca zabudowa</td>
</tr>
<tr>
<td>- park „Ogród Płaszów” położony w części środkowej obszaru</td>
<td>- cenne pod względem przyrodniczym</td>
<td>- park „Ogród Płaszów” położony w części środkowej obszaru</td>
<td>- sąsiedztwo obszarów o znacznym stopniu zainwestowania</td>
</tr>
<tr>
<td>- sąsiedztwo Wisły</td>
<td>- zainwestowanie w zachodniej i południowej części terenu, istniejąca zabudowa</td>
<td>- zainwestowanie w zachodniej i południowej części terenu, istniejąca zabudowa</td>
<td>- znaczną część obszaru ma tylko przeciętne walory przyrodnicze lub jest silnie przekształcona</td>
</tr>
<tr>
<td>- położenie w niewielkiej odległości od Zalewu Bagry</td>
<td>- walory krajobrazowe – ciąg widokowy na wale przeciwpowodziowym Wisły</td>
<td>- walory krajobrazowe – ciąg widokowy na wale przeciwpowodziowym Wisły</td>
<td>- niekorzystne warunki klimatyczne</td>
</tr>
<tr>
<td>- walory krajobrazowe – ciąg widokowy na wale przeciwpowodziowym Wisły</td>
<td>- większe niż teren znajduje się poza zasięgiem znaczących oddziaływań akustycznych</td>
<td>- większe niż teren znajduje się poza zasięgiem znaczących oddziaływań akustycznych</td>
<td>- większe niż teren znajduje się poza zasięgiem znaczących oddziaływań akustycznych</td>
</tr>
</tbody>
</table>

Strona 39
3.4. Jakość środowiska

3.4.1. Stan jakości powietrza

Oceny stanu jakości powietrza i obserwacji zmian dokonuje się w ramach Państwowego Monitoringu Środowiska. Aglomeracja Krakowska jest jedną z trzech stref, na które na potrzeby oceny podzielone jest województwo małopolskie.

Celem corocznej oceny jakości powietrza (wg Ocena jakości powietrza w województwie małopolskim w 2014 roku [30]), jest uzyskanie informacji o stężeniach zanieczyszczeń na obszarze poszczególnych stref, w tym aglomeracji, w zakresie umożliwiającym:

- **Dokonanie klasyfikacji stref w oparciu o przyjęte kryteria**: dopuszczalny poziom substancji w powietrzu, poziom dopuszczalny powiększony o margines tolerancji, poziom docelowy, poziom celu długoterminowego, których wartości zostały określone w rozporządzeniu Ministra Środowiska z 24 sierpnia 2012 r. w sprawie poziomu niektórych substancji w powietrzu (Dz. U. z 2012r., poz. 1031). Są to wartości zgodne z Dyrektywami 2008/50/WE i 2004/107/WE. Wynik klasyfikacji jest podstawą do określania potrzeby podjęcia i prowadzenia działań na rzecz poprawy jakości powietrza w danej strefie (w tym opracowywania programów ochrony powietrza POP).

- **Uzyskanie informacji o przestrzennych rozkładach stężeń zanieczyszczeń na obszarze aglomeracji lub innej strefy**, w zakresie umożliwiającym wskazanie obszarów przekroczeń wartości kryterialnych oraz określenie poziomów stężeń występujących na tych obszarach. Informacje te są niezbędne do określenia obszarów wymagających podjęcia działań na rzecz poprawy jakości powietrza (redukcji stężeń zanieczyszczeń) lub w przypadku uznania posiadanych informacji za niewystarczające – do przeprowadzenia dodatkowych badań we wskazanych rejonach.

- **Wskazanie prawdopodobnych przyczyn występowania ponadnormatywnych stężeń zanieczyszczeń w określonych rejonach** (w zakresie możliwym do uzyskania na podstawie posiadanych informacji).

Zaliczenie strefy do określonej klasy zależy od stężeń zanieczyszczeń występujących na jej obszarze i wiąże się z określonymi wymaganiami w zakresie działań na rzecz poprawy jakości powietrza (w przypadku, gdy nie są spełnione odpowiednie kryteria) lub na rzecz utrzymania tej jakości (jeżeli spełnia ona przyjęte standardy).

W przypadku, gdy w określonej strefie lub aglomeracji poziomy zawartości zanieczyszczeń w powietrzu jednej lub kilku substancji przekraczają poziomy dopuszczalne, poziomy dopuszczalne powiększone o odpowiednie marginesy tolerancji lub poziomy docelowe, niezbędne jest opracowanie planów ochrony powietrza (POP) dla przedmiotowych stref i aglomeracji w celu dotrzymania odpowiednich wartości normatywnych [30].

Aglomeracja Krakowska zgodnie z wykonaną klasyfikacją stref za 2014 rok została zaliczona do klasy C (co skutkuje koniecznością sporządzenia POP) z uwagi na przekroczenie poziomu dopuszczalnego następujących substancji:

- NO₂ – stężenie średnie w roku kalendarzowym,
- PM10 – stężenie 24–godzinne,
- PM10 – stężenie średnie w roku kalendarzowym,
- PM2,5 – stężenie średnie w roku kalendarzowym,
- benzo(α)piren – stężenie średnie w roku kalendarzowym.
Klasyfikacja stref za 2014 rok potwierdziła występujące w poprzednich latach przekroczenia dopuszczalnych i docelowych poziomów stężeń pyłu zawieszonego PM10 i PM2,5 oraz benzo(α)pirenu w pyle zawieszonym PM10 na terenie województwa małopolskiego, w tym w Krakowie. Skutkuje to kontroliowaniem stężeń zanieczyszczeń na obszarach przekroczeń oraz realizacją wszystkich działań określonych w Programie ochrony powietrza dla województwa małopolskiego opracowanym w 2013 roku i wdrożonym uchwałą Nr XLII/662/13 Sejmiku Województwa Małopolskiego z dnia 30.09.2013 roku [30].

W Krakowie najistotniejszym problemem są utrzymujące się przekroczenia wartości dopuszczalnych dla pyłu zawieszonego PM10. Poza przekraczaniem uśrednionej wartości dopuszczalnej w skali roku, na wszystkich stacjach pomiarowych w Krakowie, występują przekroczenia poziomu dopuszczalnego stężenia PM10 dla okresu 24 godzin.

Tab. 5. Ilość przypadków przekroczeń dopuszczalnego poziomu stężenia 24-godzinnego pyłu zawieszonego PM10 w 2014 roku [31].

<table>
<thead>
<tr>
<th>Stacja monitoringu jakości powietrza</th>
<th>Poziom dopuszczalny substancji w powietrzu [μm/ m³]</th>
<th>Dopuszczalna częstość przekraczania poziomu dopuszczalnego w roku kalendarzowym</th>
<th>Stwierdzone ilości przypadków przekroczeń</th>
</tr>
</thead>
<tbody>
<tr>
<td>al. Krasińskiego</td>
<td>50</td>
<td>35 razy</td>
<td>188</td>
</tr>
<tr>
<td>ul. Bulwarowa</td>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>ul. Bujaka</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

W celu dokładniejszej oceny jakości powietrza przeanalizowano wyniki z jednej z krakowskich stacji pomiarowych. W odległości niecałych 5 km od analizowanego obszaru (w kierunku południowo-zachodnim) położona jest stacja pomiarowa tła Kraków-Kurdwanów przy ul. Bujaka. Wyniki pomiarów z tej stacji zostały przedstawione w poniższej tabeli (dla lat 2011-2014) oraz na wykresach (dla roku 2014) [31].

Tab. 6. Średnie roczne stężenia wybranych zanieczyszczeń powietrza dla stacji pomiarowej Kraków-Kurdwanów z lat 2011-2014 [31].

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Poziom dopuszczalny substancji w powietrzu (norma) [μg/m³]</th>
<th>Średnie roczne stężenie [μg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>dwutlenek siarki SO₂</td>
<td>20</td>
<td>9,4</td>
</tr>
<tr>
<td>dwutlenek azotu NO₂</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>pół zawieszony PM10</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>pół zawieszony PM2,5</td>
<td>25*</td>
<td>39</td>
</tr>
</tbody>
</table>

* Poziom dopuszczalny do osiągnięcia do dnia 1 stycznia 2015 r.

Ryc. 15. Stężenie dwutlenku azotu, tlenku azotu oraz ogólnie tlenków azotu w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].

Ryc. 16. Stężenie pyłu zawieszonego PM10 w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].

Ryc. 17. Stężenie pyłu zawieszonego PM2,5 w poszczególnych miesiącach 2014 roku dla stacji pomiarowej Kraków-Kurdwanów [31].

Na stacji pomiarowej Kraków-Kurdwanów mierzone jest również stężenie ozonu. Jego średnia wartość w 2014 roku wyniosła 33 g/m³. Najwyższe wartości wystąpiły w miesiącach od kwietnia do lipca, kiedy stężenie przekroczyło 40 g/m³. Podawane
wielkości są stężeniami jednogodzinnymi, natomiast poziom docelowy ze względu na ochronę zdrowia ludzi podawany jest dla średnich ośmiogodzinnych i wynosi 120 μg/m3.

Przedstawiona powyżej charakterystyka odnosi się do poziomów dopuszczalnych ze względu na ochronę zdrowia ludzi. Określone są również dopuszczalne poziomy substancji w powietrzu ze względu na ochronę roślin, jednak nie obowiązują one w aglomeracjach/miastach.

3.4.2. Klimat akustyczny

Na obszarze opracowania na klimat akustyczny oddziałuje przede wszystkim ruch pojazdów na ul. Nowohuckiej (droga klasy głównej) i ul. Saskiej (droga klasy zbiorczej). Pozostałe drogi mają niższą rangę i charakteryzują się mniejszą intensywnością ruchu.

Charakterystyki klimatu akustycznego obszaru dokonano uwzględniając wartości dopuszczalne hałasu określone dla poszczególnych rodzajów terenu w Rozporządzeniu Ministra Środowiska z dnia 14 czerwca 2007 r. (z późn. zm.) w sprawie dopuszczalnych poziomów hałasu w środowisku. Przekroczenia norm określonych w Rozporządzeniu rozpatrywano przed wszystkim w odniesieniu do terenów zabudowy mieszkaniowej wielorodzinnej, jednorodzinnej oraz terenów rekreacyjno-wypoczynkowych.

Tab. 7. Dopuszczalne poziomy hałasu mogące mieć odniesienie do użytkowania obszaru opracowania na podstawie Rozporządzenia Ministra Środowiska z dnia 14 czerwca 2007 r. w sprawie dopuszczalnych poziomów hałasu w środowisku.

<table>
<thead>
<tr>
<th>Rodzaj terenu</th>
<th>Dopuszczalny długookresowy średni poziom dźwięku A w dB (drogi lub linie kolejowe)</th>
<th>pozostałe obiekty i działalność będące źródłem hałasu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tereny zabudowy mieszkaniowej jednorodzinnej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tereny zabudowy związanej ze stałym lub czasowym pobytom dzieci i młodzieży</td>
<td>64</td>
<td>59</td>
</tr>
<tr>
<td>Tereny domów opieki społecznej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tereny szpitali w miastach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tereny zabudowy mieszkaniowej wielorodzinnej i zamieszkania zbiorowego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tereny zabudowy zagrodowej</td>
<td>68</td>
<td>59</td>
</tr>
<tr>
<td>Tereny rekrezacyjno-wypoczynkowe</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Tereny mieszkaniowo-usługowe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objaśnienia:
1) Wartości określone dla dróg i linii kolejowych stosuje się także dla torowisk tramwajowych poza pasem drogowym i kolei linowych,
2) L_{DWN} – długookresowy średni poziom dźwięku A wyrażony w decybelach (dB), wyznaczony w ciągu wszystkich dob w roku, z uwzględnieniem pory dnia (rozumianej jako przedział czasu od godz. 6.00 do godz. 18.00), pory wieczoru (rozumianej jako przedział czasu od godz. 18.00 do godz. 22.00) oraz pory nocy (rozumianej jako przedział czasu od godz. 22.00 do godz. 6.00),
3) L_{N} – długookresowy średni poziom dźwięku A wyrażony w decybelach (dB), wyznaczony w ciągu wszystkich pór nocy w roku (rozumianych jako przedział czasu od godz. 22.00 do godz. 6.00).

Zgodnie z mapą akustyczną Krakowa zasięg ponadnormatywnych oddziaływań w zakresie izofony 68 dB dla pory dnia, a także izofony 59 dB dla pory nocy występuje na terenie ogródeków działkowych przy ul. Nowohuckiej, a także sięga kilku budynków. Z kolei oddziaływanie w zakresie izofony 64 dB, istotne ze względu na zabudowę

Szczegółowy przebieg izofony \(L_{DWN} = 64 \), \(L_{DWN} = 68 \) oraz \(L_N = 59 \) oznaczono w części kartograficznej niniejszego opracowania.

3.4.3. Stan jakości wód

Wody powierzchniowe

Omawiany teren położony jest w obrębie jednolitej części wód powierzchniowych 1743 Wisła od Skawinki do Podłęzanki. Ogólny stan wód w punkcie pomiarowo-kontrolnym dla tej JCWP jest zły, jak podaje raport WIOŚ [37]. Wynika to ze zlego potencjału ekologicznego (stan chemiczny jest dobry). Potencjał ekologiczny określa się na podstawie wyników klasyfikacji elementów fizykochemicznych, biologicznych i hydromorfologicznych (zgodnie z Rozporządzeniem Ministra Środowiska w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych). Zły potencjał ekologiczny oznacza, że biologiczne elementy jakości wód osiągają wartości wskazujące na poważne odczynienia od wartości cechujących biocenozy naturalne dla danego typu wód, łącznie z brakiem typowych biocenoz.

Warto zaznaczyć, że punktem pomiarowo-kontrolnym położonym najbliżej obszaru jest Prądnik-Białucha – Kraków ujście (dla jednolitej części wód 2697 Prądnik od Garliczki (bez Garliczki) do ujścia). W tym punkcie również odnotowano zły stan wód, ze względu na umiarkowany potencjał ekologiczny i dobry stan chemiczny.

Wody podziemne

Monitoring wód podziemnych prowadzony jest w ramach Państwowego Monitoringu Środowiska. Najbliższej położonym punktem pomiarowo-kontrolnym jest punkt 2001. Znajduje się on w odległości ok. 5 km, w obrębie jednolitej części wód podziemnych o numerze 150. Wody podziemne badane w tym punkcie zaliczono do III klasy jakości [32]. Oznacza ona wody zadowalającej jakości, dla której wartości elementów fizykochemicznych są podwyższone w wyniku naturalnych procesów lub słabego wpływu działalności człowieka (zgodnie z Rozporządzeniem Ministra Środowiska w sprawie kryteriów i sposobu oceny stanu wód podziemnych). Zaznacza się, że pomiary z tego punktu mogą nie być reprezentatywne dla obszaru opracowania.

3.4.4. Pola elektromagnetyczne

Oceny poziomów pol elektromagnetycznych w środowisku dokonuje się w ramach Państwowego Monitoringu Środowiska. W rozumieniu Ustawy o ochronie środowiska pola elektromagnetyczne (PEM) są to pola elektryczne, magnetyczne oraz elektromagnetyczne o częstotliwościach z zakresu od 0 Hz do 300 GHz, stanowiące promieniowanie elektromagnetyczne niejonizujące. Promieniowanie elektromagnetyczne niejonizujące powstaje w wyniku działania zespołów sieci i urządzeń elektrycznych, urządzeń elektromedycznych do badań diagnostycznych i zabiegów fizykochemicznych, stacji nadawczych, urządzeń energetycznych, telekomunikacyjnych, radiolokacyjnych i radionawigacyjnych. PEM może występować wszędzie: w miejscu zamieszkania, pracy czy wypoczynku. Pola i promieniowanie elektromagnetyczne występują w otoczeniu wszystkich odbiorników energii elektrycznej [8]. W obszarze opracowania aktualnie znajdują się takie źródła promieniowania elektromagnetycznego jak dwutorowa napowietrzna linia elektroenergetyczna wysokiego napięcia (110 kV) relacji Łeg – Dajwór, Łeg – Kotlarska, 11 stacji transformatorowych SN/nN, linie elektroenergetyczne średniego i niskiego napięcia.
oraz urządzenia powszechnego użytku emitujące pola elektromagnetyczne (np. telefony komórkowe, sterowniki radiowe, telewizory).

Podstawowym założeniem obserwacji zmian wielkości opisujących pola elektromagnetyczne jest ochrona ludności przed wzrostem poziomów pól elektromagnetycznych ponad wartości dopuszczalne, określone dla terenów przeznaczonych pod zabudowę mieszkaniową i miejsc dostępnych dla ludności w rozporządzeniu Ministra Środowiska z dnia 30 października 2003 r. w sprawie dopuszczalnych poziomów pól elektromagnetycznych w środowisku oraz sposobów dotrzymania tych poziomów.

Oceny poziomu PEM dokonuje WIOŚ poprzez prowadzenie pomiarów monitoringowych promieniowania elektromagnetycznego, według wytycznych określonych w rozporządzeniu Ministra Środowiska z 12 listopada 2007 roku w sprawie zakresu i sposobu prowadzenia okresowych badań poziomów pól elektromagnetycznych w środowisku [35].

Jak wykazały badania pól elektromagnetycznych przeprowadzone przez WIOŚ w Krakowie w ramach podsystemu monitoringu PEM w latach 2010-2012 oraz w 2013 i 2014 roku (kontynuacja drugiego cyku pomiarowego dla lat 2013-2015) w żadnym punkcie pomiarowym na terenie miasta Krakowa nie zostały przekroczone dopuszczalne poziomy promieniowania elektromagnetycznego, a wyniki kształtują się znacznie poniżej dopuszczalnej wartości PEM wynoszącej 7 V/m [33] [34] [35]. W 2014 roku najbliższ analizowanego obszaru znajdował się punkt pomiarowy przy ul. Meissnera, dla którego wartość średnia wynosiła 1 V/m [35].

3.4.5. Wartość krajobrazu

Krajobraz obszaru w relacjach wewnętrznych nie należy do wyróżniających się na tle pozostałych terenów miasta, teren jest stosunkowo płaski, z dużą ilością elementów różnorodnego zagospodarowania, z architekturą o przeciętnej jakości o dużym zróżnicowaniu pod względem stylistyki i gabarytów. Głównymi atutami w krajobrazie są bliskość rzeki i rozległych terenów nadrzecznych oraz tereny zieleni z dużą ilością drzew zachowane w śladach starorzeczy Wisły.

W strukturze krajobrazu obszaru do elementów wyróżniających się należy zaliczyć:
- w ekspozycji czynnej:
 - ciąg widokowy związany z ciągiem pieszym biegnącym po wale Wiślanym,
 - ciąg widokowy wzdłuż ulicy Nowohuckiej,
- w ekspozycji biernej:
 - rozległe wielkoskalowe wnętrze krajobrazowe obejmujące zachowane tereny różnorodnej zieleni wzdłuż rzeki Wisły, w międzywalu oraz jego bezpośrednim sąsiedztwie,
 - liczne niewielkie wnętrza krajobrazowe ze znacznym udziałem drzew tworzące lokalne scenerie w obrębie terenów niezainwestowanych głównie w rejonie pomiędzy ulicami Gumińska i Lasówka.

Panorama obszaru dostępna jest z lewego brzegu Wisły oraz z ciągu ulicy Nowohuckiej. W tym ujęciu w krajobrazie wyraźnie wyróżniają się 11-piętrowe wieżowce zlokalizowane przy ul. Lasówka, fragment przebiegającego napowietrznie ciepłociągu oraz słupy linii elektroenergetycznej wysokiego napięcia. Niekorzystne oddziaływanie tych dominant łagodzone jest występującą na pierwszym planie zielenią terenów nadrzecznych oraz taflą wód Wisły. Pomimo położenia poza granicami obszaru opracowania, elementem
najbardziej dominującym w krajobrazie obszaru pozostają zlokalizowane po drugiej stronie Wisły kominy i chłodnie kominowe elektrociepłowni w Łęgu, stanowiące swojego rodzaju punkt orientacyjny, odniesienie w lokalizacji obszaru.

3.4.6. Zagrożenia środowiska poważną awarią

W myśl definicji zawartych w ustawie Prawo ochrony środowiska (POŚ) pod pojęciem poważnej awarii rozumie się zdarzenie, w szczególności emisję, pożar lub eksplozję, powstałe w trakcie procesu przemysłowego, magazynowania lub transportu, w których występuje jedna lub więcej niebezpiecznych substancji, prowadzące do natychmiastowego powstania zagrożenia życia lub zdrowia ludzi lub środowiska lub powstania takiego zagrożenia z opóźnieniem. Poważna awaria przemysłowa – zdefiniowana została jako poważna awaria w zakładzie;

Zgodnie z Art.248. Prawa ochrony środowiska „zakład stwarzający zagrożenie wystąpienia poważnej awarii przemysłowej, w zależności od rodzaju, kategorii i ilości substancji niebezpiecznej znajdującej się w zakładzie uznaje się za zakład o zwiększonym ryzyku wystąpienia awarii (zakład o zwiększonym ryzyku ZZR), albo za zakład o dużym ryzyku wystąpienia awarii (zakład o dużym ryzyku ZDR)”.

Obszar opracowania sąsiaduje od strony zachodniej z zlokalizowaną po drugiej stronie Wisły elektrociepłownią w Łęgu – zakładem prowadzonym przez przedsiębiorstwo EDF Polska S.A. Zakład ten na podstawie ustawy z dnia 27 kwietnia 2001 r. Prawo ochrony środowiska ze względu na ilość posiadanych substancji niebezpiecznych, został zaliczony do zakładów o zwiększonym ryzyku wystąpienia awarii (ZRR).

Ryzyko wystąpienia poważnej awarii (nie przemysłowej) w obrębie obszaru wiąże się głównie z istniejącymi ciągami komunikacyjnymi, którymi mogą być przewożone substancje niebezpieczne. Pod tym względem do najbardziej narażonych należy obecnie ul. Nowohucka, która stanowi ważną arterię Krakowa, intensywnie wykorzystywaną również przez transport ciężarowy.

3.5. Ochrona walorów i zasobów przyrodnich

Formy ochrony przyrody

Na obszarze opracowania występują chronione gatunki zwierząt (zgodnie z Rozporządzeniem Ministra Środowiska w sprawie ochrony gatunkowej zwierząt z dnia 6 października 2014; patrz rozdział 2.2.7. Świat zwierząt). Przepisy dotyczące ochrony gatunkowej wprowadzają odpowiednie zakazy, a także sposoby ochrony gatunkowej. Możliwe jest uzyskanie odstąpienia od niektórych zakazów, co również jest określone w rozporządzeniu.

W obszarze opracowania zidentyfikowano zbiornisko nadbrzeżnego Łęgu wiązowo-jesionowego – siedlisko wymienione w Rozporządzeniu Ministra Środowiska w sprawie siedlisk przyrodniczych oraz gatunków będących przedmiotem zainteresowania Wspólnoty, a także kryteriów wyboru obszarów kwalifikujących się do uznania lub wyznaczenia, jako obszary Natura 2000 (kod siedliska: 91E0).
Tereny zieleni i zadrzewień są chronione na podstawie przepisów ogólnych. Prawo w zakresie ochrony przyrody reguluje m.in. kwestię prac wykonywanych w obrębie zieleni oraz związanych z jej usunięciem. Konieczne może być uzyskanie odpowiednich decyzji.

Obowiązujące dokumenty planistyczne

Warto również zauważyć, że fragmenty analizowanego terenu znajdują się w strefie kształtowania systemu przyrodniczego, w której sposób zagospodarowania podporządkowany jest ochronie wartości i zasobów przyrodniczych.

Ryc. 18. Fragmenty omawianego terenu znajdujące się w strefie kształtowania systemu przyrodniczego (zgodnie ze Studium [1]).

Część obszaru opracowania (tereny w sąsiedztwie Wisły i park „Ogród Płaszów”) mieści się również w zasięgu terenów wskazanych w Studium [1] jako parki rzeczne, które wymagają ochrony przed zabudową i uznania je za trwałe zielone struktury w przestrzeni miasta.
Walory przyrodnicze obszaru opracowania mogą być chronione w większym stopniu dzięki zapisom miejscowego planu zagospodarowania przestrzennego – omawiany teren jest obecnie objęty miejscowymi planami obszarów „Myśliwska” oraz, w niewielkim stopniu, „Trasa Nowopłaszowska”. Wyznaczają one tereny: zabudowy mieszkaniowej jednorodzinnej, zabudowy mieszkaniowej wielorodzinnej, zabudowy mieszkalnej wielorodzinnej i usług, zabudowy mieszkaniowej i usług, zabudowy usługowej o charakterze komercyjnym, zabudowy usługowej o charakterze publicznym, zieleni urządzanej o charakterze parkowym, łąk i zieleni łęgowej położone w międzywału Wisły, wód powierzchniowych, obiektów i urządzeń komunikacji, dróg publicznych, dróg wewnętrznych.

3.6. Zgodność aktualnego użytkowania i zagospodarowania terenu
z uwarunkowaniami przyrodniczymi

Predyspozycje środowiskowe obszaru opracowania dla pełnienia określonych funkcji społeczno-gospodarczych zostały omówione w rozdziale 3.3 Przydatność środowiska dla realizacji funkcji społeczno-gospodarczych. Analiza aktualnego użytkowania i zagospodarowania terenu pozwala stwierdzić, że jest ono w większości zgodne z cechami i uwarunkowaniami środowiska przyrodniczego.

Tereny najcenniejsze z punktu widzenia przyrodniczego (związane z bezpośrednim sąsiedztwem Wisły i parkiem rzecznym) pozostają obecnie niezabudowane. Mogłyby one być jednak wykorzystywane do równoległego pełnienia funkcji rekreacyjno-wypoczynkowej, z uwzględnieniem walorów widokowych (ciąg widokowy na wale przeciwpowodziowym). Utrzymaniu walorów przyrodniczych służy również funkcjonowanie ogródków działkowych w północno-zachodnim krańcu terenu oraz istniejąca zieleń towarzysząca zabudowie (zwłaszcza mniej intensywnej).
Za główną niezgodność w zagospodarowaniu obszaru można uznać lokalizację zabudowy w zasięgu zagrożenia powodziowego – należy jednak zauważyć, że istniejąca zabudowa nie jest położona w najbliższym sąsiedztwie Wisły, a ponadto problem ten dotyczy całego obszaru i sąsiednich terenów.

3.7. Ocena występowania rzeczywistych sytuacji konfliktowych w środowisku przyrodniczym

Do konfliktów rzeczywistych na analizowanym terenie należy zaliczyć zanieczyszczenie środowiska. Źródła oddziaływań na powietrze, klimat akustyczny i środowisko gruntowo-wodne zostały zidentyfikowane i omówione w rozdziale 2.8. Źródła antropogenicznych oddziaływań na środowisko. Sytuacje konfliktowe w środowisku przyrodniczym wynikają głównie z postępującego rozwoju terenów zabudowy oraz niekontrolowanego wykorzystania terenów zieleni, w tym wzdłuż Wisły. Zabudowa oraz ciągi komunikacyjne, zwłaszcza ul. Nowohucka czy ul. Saska, stanowią trudną do przekroczenia barierę dla fauny obszaru, utrudniają powiązania obszaru z terenami sąsiednimi, jak również wewnątrz jego granic. Natomiast użytkowanie rekreacyjne w połączeniu z brakiem działań porządkowych na rozległych terenach nadzirnych oraz w obecnie istniejących terenach zieleni niewielkiej i niekontrolowanej, skutkuje bardzo dużym zanieczyszczeniem wszelkiego rodzaju śmieci i pozostałości „spontanicznej rekreacji”. Poza zaśmieceniem widoczne są również ślady dewastacji zielonej. Należy zwrócić uwagę, że zaśmiecenie dolin rzecznych, w tym Wisły w obrębie międzywala, stanowi duży problem gdyż pozostawione śmieci zalegają przez wiele lat, przemieszczane, jak również nanoszone są dodatkowo w trakcie wezbran powodziowych.

Istotnym problemem obszaru jest także presja inwestycyjna. W obszarze, w bliskim sąsiedztwie Wisły, zlokalizowane są pojedyncze wysokie budynki, zgodnie z obowiązującym planem miejscowym w obszarze możliwe jest lokalizowanie kolejnych obiektów mieszkaniowych wielorodzinnych o wysokości nawet 36 m. Biorąc pod uwagę położenie obszaru w obrębie korytarza ekologicznego Wisły, tak wysoka zabudowa stanowi zagrożenie dla ptaków licznie przelatujących w tym rejonie.

Dopuszczenie lokalizacji wysokiej zabudowy, wzbudza również sprzeciw okolicznych mieszkańców (w obecnie obowiązującym Studium [1] wysokość ta jest już niższa i wynosi 25 m) [5].

Niedostosowanie charakteru czy gabarytów zabudowy do uwarunkowań obszaru wpływa również na krajobraz oraz na warunki przepływu mas powietrza w obrębie korytarza przewietrzań wzdłuż doliny Wisły.

Naturalnym zagrożeniem dla obszaru opracowania jest zagrożenie powodziowe, które dotyczy w zasadzie całego omawianego obszaru, przy czym przed załaniem wodą o prawdopodobieństwie wystąpienia równym lub większym niż raz na sto lat zabezpieczają istniejące wały przeciwpowodziowe (patrz: pkt.2.4). W maju 2010 roku w rejonie ul. Na Zakolu (ok. 0,5 km na północny-zachód od granic obszaru) nastąpiło przerwanie wałów, woda wdarła się do kilku firm, ogródków działkowych, Wojewódzkiej Bazy Przeciwpowodziowej i na okoliczne ulice. Ewakuowano kilkaset osób [44].

Bliskie sąsiedztwo Wisły, usytuowanie terenu oraz problemy ze sprawnym odprowadzaniem wód opadowych w tym rejonie miasta mogą powodować podtopienia, zwłaszcza w przypadku zamknięcia śluży wałowej. W obecnie obszaru śluza wałowa zlokalizowana jest w rejonie ulic Nowohuckiej i Koszykarskiej na przebiegu rowu odwadniającego.
3.8. Waloryzacja przyrodnicza obszaru

Według waloryzacji przyrodniczej obszaru Krakowa przeprowadzonej w ramach opracowania „Mapa roślinności rzeczywistej Miasta Krakowa i wyznaczenie obszarów przyrodniczo najcenniejszych, niezbędnych dla zachowania równowagi ekosystemu miasta” [38] najwyższe walory przyrodnicze reprezentuje łęg wiązowo-jesionowy, a wysokie walory – łąki świeże rajgrasowe. Tereny cenne pod względem przyrodniczym stanowią przede wszystkim spontaniczne zbiorowiska ruderalne i drzewostany na siedliskach łęgów w zachodniej części terenu, a także ogródki działkowe.

Pozostały teren charakteryzuje się tylko przeciętnymi walorami przyrodniczymi, a niektóre tereny zostały nawet określone, jako silnie przekształcone.

4. Prognoza

4.1. Kierunki i natężenie zmian zachodzących w środowisku przyrodniczym pod wpływem aktualnie istniejącego użytkowania i zagospodarowania terenu

4.1.1. Zmiany naturalne

W chwili obecnej obszar opracowania jest w dużej mierze zainwestowany, jednak w jego zasięgu występują także tereny zielone, wolne od zabudowy. Składa się na nie przede wszystkim międzywale Wisły i teren parku rzecznego „Ogród Płaszów”. Należy jednak zauważyć, że w północno-zachodnim krańcu terenu znajdują się ogródki działkowe, a zabudowie mieszkaniowej, zwłaszcza jednorodzinnej, towarzyszy dość znaczną ilość

Zmiany naturalne mogą następować wskutek wystąpienia wezbrań powodziowych oraz działalności rzek. Poza zdarzeniami ekstremalnymi, dotyczy to w zasadzie obszaru pomiędzy rzeką a wałami przeciwpowodziowymi, gdzie prawdopodobieństwo powodzi jest wysokie i zalania zdarzają się stosunkowo często.

4.1.2. Zmiany antropogeniczne

Zdecydowana większość analizowanego terenu znajduje się w obrębie obowiązującego miejscowego planu zagospodarowania przestrzennego „Myśliwska”, który został przyjęty uchwałą z dnia 20 października 2010 roku. Pozostały niewielki fragment (zachodni kraniec terenu) należy do obszaru objętego obowiązującym miejscowym planem „Trasa Nowopłaszowska”, przyjętym uchwałą z dnia 11 października 2006 roku.

Zmiany antropogeniczne w obrębie obszaru wynikają głównie z działań inwestycyjnych, które umożliwiają zapisy prawa miejscowego w tym zakresie.

Wskutek realizacji ustaleń obowiązujących planów możliwe jest wzrost zainwestowania obszaru przy jednoczesnej ochronie części terenów zieleni. Bardzo istotne zmiany mogą zająć w krajobrazie obszaru oraz warunkach przewietrzenia, ze względu na dopuszczenie zabudowy o wysokości do 36m na części terenów w sąsiedztwie terenów zieleni nad Wisłą.

4.2. Potencjalne sytuacje konfliktowe w środowisku

Potencjalne konflikty wynikać mogą ze wzrostu zainwestowania obszaru objętego analizą. Ponieważ prawie dla całości terenów obowiązują zapisy miejscowego planu zagospodarowania przestrzennego „Myśliwska” nie przewiduje się chaotycznego rozwoju zabudowy. Wg Prognozy oddziaływania na środowisko sporządzonej do planu „Myśliwska”[4a] mogą natomiast nastąpić:

- wzrost emisji z systemów grzewczych,
- wzrost ilości wytwarzanych odpadów,
- zwiększenie ilości ścieków sanitarnych,
- zanieczyszczenie gleb wskutek emisji spalin samochodowych oraz hałas w otoczeniu nowych ciągów komunikacyjnych,
- konflikt z uwarunkowaniami przyrodniczymi w wyniku kolizji możliwego zagospodarowania z terenami o wysokich walorach przyrodniczych wyznaczonych w: „Mapie roślinności rzeczywistej Miasta Krakowa i wyznaczenie obszarów przyrodniczo najcenniejszych, niezbędnych dla zachowania równowagi ekosystemu miasta. Część Południowa”.

Zintensyfikowanie zabudowy, tym samym wzrost ilości użytkowników obszaru, przekładać się również będzie na obciążenie oddziaływaniami antropogenicznymi na wyznaczone do zachowania tereny zieleni.
Część obszaru opracowania w nawiązaniu do korytarza Wisły pełni istotną rolę w zakresie przewietrzaniami miasta. Poważnym zagrożeniem może być więc także kształtowanie zabudowy, które uniemożliwi lub ograniczy możliwości obszaru w tym zakresie. Jest to prawdopodobne zwłaszcza w przypadku realizacji zabudowy z przyjęciem wyznaczonych w obowiązującym planie „Myśliwska” maksymalnych wskaźników wysokości dla terenów zabudowy wielorodzinnej (MW) oraz wielorodzinnej i usług (MWU) - do 36 m. Wyznaczone tereny MW oraz MWU stanowią znaczącą część obszaru, najbardziej problematyczną i rodzącą konflikty mogłyby być zabudowa na wschód od ulicy Lasówka.

Powstanie intensywnej zabudowy - wysokich budynków mieszkaniowych i usługowych wywołać może również bardzo znaczący wzrost natężenia ruchu samochodowego. Pojawienie się dodatkowej dużej liczby samochodów dojeżdżających do obiektów skutkować może problemami w zakresie komunikacji oraz parkowania.

Sytuacje konfliktowe mogą wystąpić w przypadku wezbrań powodziowych o mniejszym prawdopodobieństwie wystąpienia niż raz na sto lat, lub w przypadku uszkodzeń wału wiślanego, ew. podtopień wskutek zamknięcia śluz wałowych w przebiegu rowu odwadniającego.

5. Wskazania

5.1. Wskazanie możliwości likwidacji i minimalizacji zagrożeń środowiska przyrodniczego

Analizowany obszar w chwili obecnej jest w znacznym stopniu zainwestowany, jednak w jego zasięgu znajdują się również tereny zielone wolne od zabudowy, a także ogródki działkowe (fragment Rodzinnego Ogrodu Działkowego „Płaszów”). Wśród terenów zielonych najwyższą wartość ze względów przyrodniczych przedstawia łęg wiązowo-jesionowy. Wyróżnić można również niewielką powierzchnię ląk świeżych rajgrasowych o wysokich walorach przyrodniczych oraz tereny cenne pod względem ekologicznym (rozdział 3.8. Waloryzacja przyrodnicza obszaru). Omawiany obszar, szczególnie jego wschodnia część, ma również duże znaczenie jako potencjalny obszary wymiany powietrza – istotny dla przewietrzaniami całego miasta.

Najważniejsze elementy i obiekty przyrodnicze obszaru chronione są poprzez wykluczenie możliwości zabudowy wynikające z obowiązującego miejscowego planu zagospodarowania przestrzennego „Myśliwska”, a także ogólnie obowiązującego prawa (prawo wodne w zakresie obszaru szczególnego zagrożenia powodziowego).

Zagrożeniem dla środowiska naturalnego obszaru opracowania jest rozwój zabudowy. Zabudowa wiąże się ze zmniejszaniem powierzchni biologicznie czynnej, likwidacją części roślinności, zmianami w obrębie siedlisk oraz, co niezwykle istotne, z możliwym zamykaniem lub ograniczaniem tras migracyjnych. Negatywny wpływ na środowisko może także mieć związek z utrudnieniem przepływu powietrza czy emisją zanieczyszczeń do środowiska.

W celu minimalizacji zagrożeń środowiska naturalnego istotne jest ustalenie maksymalnie możliwego (w odniesieniu do ustaleń obowiązującego Studium) wskaźnika powierzchni biologicznie czynnej oraz ochrona przed zabudową wskazanych terenów zieleni.

W celu utrzymania walorów przyrodniczych należy zachować również występujące w obrębie obszaru korytarze ekologiczne oraz lokalne i ponadlokalne powiązania ekologiczne (rozdział 2.3. Powiązania przyrodnicze obszaru z otoczeniem). Jest to ważne w kontekście
zachowania ciągłości systemu przyrodniczego miasta. Najistotniejsze powiązania to połączenie parku rzecznego „Ogród Płaszów” z terenami wzdłuż Wisły oraz w kierunku południowym z rejonem zbiornika Bagry.

Dla ograniczenia negatywnego oddziaływania na środowisko przyrodnicze wskazana jest maksymalna możliwa ochrona istniejących w obszarze drzew. Na rysunku ekofizjografii oznaczono zostały pojedyncze drzewa wyróżniające się w krajobrazie obszaru, a także większe grupy drzew i krzewów w sąsiedztwie zabudowy. Ze względów zarówno przyrodniczych, jak i estetycznych, wskazane jest ich zachowanie i wykorzystanie w przyszłym zagospodarowaniu. Wśród wskazanych grup zieleni do najbardziej wartościowych należą dość liczne przyrodnicze, ale często niewidoczne dla oczu drzewa, które w sąsiedztwie zabudowy. Zachowanie tych drzew jest niezbędne z dwóch powodów: pierwszym jest ich wartość przyrodnicza, a drugim — estetyczna funkcja, która nadal pełni funkcję kształtowania krajobrazu w obszarze.

W związku z możliwością ujawnienia się problemów z odwodnieniem terenów, w zakresie dotyczącym zagospodarowania wodami opadowymi wskazuje się:

- zagospodarowanie wód opadowych na terenach przeznaczonych pod przyszłe inwestycje poprzez zastosowanie rozwiązań ułatwiających przesianie wody deszczowej do gruntu (powierzchnie przepuszczalne, parkingi zielone), spowolnienie odpływu oraz wzrost retencji (tworzenie w sieci kanalizacyjnej pojemności retencyjnej, wykonywanie nieczeń do gromadzenia wód opadowych);

5.2. Wskazanie obszarów koniecznych do ochrony prawnej

W obszarze opracowania nie wskazuje się terenów ani obiektów, dla których konieczne byłoby objęcie ochroną prawną. Wystarczającą ochronę mogą zapewnić odpowiednie ustalenia miejscowego planu zagospodarowania przestrzennego, zapewniające racjonalne wykorzystanie przestrzeni z uwzględnieniem potrzeb ochrony środowiska oraz właściwe kształtowanie krajobrazu w całym obszarze opracowania. Zaleca się jednak ochronę przed zabudową terenów wskazanych do kształtowania w formie zieleni, które powinny pełnić funkcję przede wszystkim przyrodniczą (co zostało omówione w rozdziale 5.3).
5.3. Wskazanie obszarów predysponowanych do pełnienia funkcji przyrodniczych

Z przyrodniczego punktu widzenia najistotniejsze w obszarze opracowania jest zachowanie niezabudowanych terenów zieleni we wschodniej części (w tym najcenniejszego łęgu wiązowo-jesionowego [38]), terenu parku rzecznego „Ogród Płaszów” oraz ogródków działkowych, a także utrzymanie powiązań przyrodniczych.

Pozostałe wspomniane tereny, a więc „Ogród Płaszów” oraz ogródki działkowe powinny być kształtowane jako zieleń urządzona – zapewniająca odpowiednie warunki do rekreacji i wypoczynku dla okolicznych mieszkańców, a także pozwalająca na zachowanie walorów przyrodniczych obszaru. Należy zaznaczyć, że istnieją już projekty zagospodarowania parku „Ogród Płaszów”.

Kluczowe dla środowiska przyrodniczego jest także utrzymanie oraz dalsze kształtowanie ważnych powiązań przyrodniczych – wewnątrz obszaru oraz z terenami sąsiednimi. Głównym korytarzem ekologicznym przebiegającym przez obszar opracowania jest Dolina Wisły, która wchodzi w skład europejskiej sieci EECNET oraz stanowi korytarz o znaczeniu międzynarodowym. Pozostałe powiązania ekologiczne, wskazane do kształtowania, powinny łączyć wyznaczone tereny zieleni (przede wszystkim „Ogród Płaszów” z zielenią wzdłuż Wisły), a także wiązać obszar z terenami położonymi na południe – drugą częścią parku rzecznego „Ogród Płaszów”, a dalej również Zalewem Bagry.

5.4. Wskazanie terenów przydatnych do pełnienia różnych funkcji społeczno-gospodarczych, z podaniem stopnia natężenia ich realizacji

Jak zaznaczono w rozdziale 3.3. Przydatność środowiska dla realizacji funkcji społeczno-gospodarczych, obszar predysponowany jest do rozwoju funkcji mieszkaniowych oraz usługowych. Intensywność zmian przestrzennych w tym rejonie miasta jest w ostatnich latach bardzo wysoka. Powstawanie zabudowy wielorodzinnej w obszarze, w którym znaczący procent stanowi zabudowa jednorodzinna powoduje konflikty funkcjonalno-przestrzenne (grodzenie osiedli, nasilone oddziaływania, chaos przestrzenny, dysproporcje zabudowy). Jednym z ważniejszych zadań, poza zabezpieczeniem najcenniejszych elementów środowiska przyrodniczego, jest określenie zasięgu terenów ochrony istniejącej zabudowy o niskiej intensywności. Tereny te wskazuje się w nawiązaniu do istniejącej zabudowy mieszkaniowej jednorodzinnej zlokalizowanej w otoczeniu ulic: Gumniska, Myśliwska i Koszykarska oraz po wschodniej stronie ul. Lasówka (na rysunku ekofizjografii zaznaczone jako predysponowane do zachowania niskiej intensywności zabudowy).

W terenach tych możliwa jest również lokalizacja funkcji usługowej, jako uzupełnienie podstawowej funkcji mieszkaniowej.

Odnośnie pozostałych terenów, które w obowiązującym Studium wskazuje się do zainwestowania zabudową mieszkaniową wielorodzinną oraz usługową o większym stopniu intensywności, wyodrębnia się dwa rejony, w których pożądanym jest zachowanie wskaźnika pow. biologicznie czynnej na poziomie min. 50% (zaznaczone na rysunku ekofizjografii). Uzasadnieniem za określeniem wskazania obniżenia intensywności zabudowy dla tych terenów jest usytuowanie w bezpośrednim sąsiedztwie terenów zieleni nad Wisłą.
występujące zadrzewienia, a w przypadku terenu przy ul. Lasówka położenie na przebiegu ważnych powiązań ekologicznych.

Dostosowanie intensywności, w tym wysokości zabudowy do uwarunkowań obszaru jest bardzo istotne również ze względu na to, że znaczna część terenu stanowi potencjalny obszar wymiany powietrza (zgodnie ze Studium [1]). Utrzymanie przepływu powietrza i wspomaganie jego wymiany i regeneracji jest szczególnie ważne dla całego Krakowa, dlatego też planowane zagospodarowanie powinno pozwalać na utrzymanie tych funkcji w obszarze.

Jako tereny zieleni urządzonej o wiodących funkcjach rekreacyjnych wskazuje się również istniejące ogródki działkowe.

Teren zieleni na wschodzie obszaru (między Wawelem i jego bezpośrednie sąsiedztwo) powinien zostać podporządkowany funkcji przyrodniczej (rozdział 5.3) oraz ochrony przeciwpowodziowej. Te nadrzędne funkcje, uwzględniając przepisy prawa wodnego, nie wykluczają możliwości równoczesnego wykorzystanie terenów nadrzecznych (w tym szczególnego zagrożenia powodzią) do wykorzystania dla celów rekreacji i wypoczynku. Ze względu na ograniczenia prawne oraz fizjograficzne intensywność zagospodarowania rekreacyjnego powinna być minimalna, ale jednocześnie na poziomie umożliwiającym wykorzystania obszaru (ścieżki piesze, ścieżki rowerowe, zejścia na brzeg rzeki, punkty obserwacyjne). Z uwagi na ochronę wodorobotników zagospodarowanie tego typu powinno realizować się w oparciu o istniejące przedępy i ścieżki powstałe w sposób spontaniczny.

Przez obszar opracowania przebiega linia elektroenergetyczna wysokiego napięcia 110 kV, a także magistrala ciepłownicza, magistrala wodociągowa oraz kolektor kanalizacji ogólnospławnej. Sieci te wymagają zachowania stref ochronnych wolnych od zabudowy z możliwością dostępu odpowiednich służb.

Obszar opracowania jest już w pewnym stopniu zainwestowany, choć w jego zasięgu występuje także znaczna ilość zieleni. Dalszy rozwój zainwestowania powinien przebiegać z uwzględnieniem występujących obecnie wodorobotników oraz w jak największym stopniu chronić istniejącą zielę – zarówno w przypadku roślinności towarzyszącej zabudowie, jak i zbiorowisk o większej powierzchni.
6. Uwarunkowania ekofizjograficzne – wnioski

2. Obszar opracowania jest zainwestowany przede wszystkim w części zachodniej oraz południowej. Istniejącą zabudowę stanowią głównie budynki jednorodzinne oraz wielorodzinne. Można także wyróżnić obiekty o charakterze usługowym, a także usługowo-produkcyjnym i magazynowym.

3. Tereny zieleni mają znaczny udział w obszarze – chodzi zarówno o zieleń nieurządzoną, jak i urządzoną. Składa się na to ogródki działkowe na północnym zachodzie obszaru (Rodzinny Ogród Działkowy „Płaszów”), a także tereny zaliczone do parków rzecznych [1] (wschodnia część opracowania), w tym międzywale i teren przeznaczony pod park rzeczny „Ogród Płaszów”.

4. W obszarze zlokalizowany jest obiekt zabytkowy – wpisany do rejestru zabytków i objęty ochroną konserwatorską dawny spichlerz zbudowany w 1805 r., który stanowi element dawnego zespołu dworsko-folwarcznego w Płaszowie.

5. Przez obszar przebiegają sieci infrastruktury o znaczeniu ponadlokalnym – ogólnomiejskim - linia elektroenergetyczna wysokiego napięcia 110 kV, magistrala ciepłownicza, magistrala wodociągowa (planowana jest także druga nitka tej sieci), kolektor kanalizacji ogólnospławnej. Wzdłuż sieci infrastruktury występują ograniczenia w zabudowie i użyciu terenu, w przypadku wymienionych ograniczeń dotyczą pasów terenu o stosunkowo dużej zajętości.

6. Zdecydowana większość obszaru znajduje się w obrębie obowiązującego mpzp „Myśliwska” (z dnia 20 października 2010 r.). Pozostały niewielki fragment (zachodni krąg terenu) należy do obszaru objętego obowiązującym mpzp „Trasa Nowopłaszowska” (z dnia 11 października 2006 r.).

9. Teren opracowania znajduje się w zasięgu zagrożenia powodziowego. Międzywale Wisły stanowi obszar szczególnego zagrożenia powodzi. Według „Map zagrożenia powodziowego i map ryzyka powodziowego” [56] w przypadku zniszczenia lub uszkodzenia wału przeciwpowodziowego w sceneriuszu całkowitego zniszczenia wałów – dla przepływu o średnim prawdopodobieństwie wystąpienia powodzi wynoszącym raz na 100 lat (Q 1%) – na zalanie narażony jest w zasadzie cały obszar. Opracowanie wskazuje również miejsca możliwe przelania się wody przez wał w przypadku powodzi o prawdopodobieństwie wystąpienia raz na 500 lat (Q 0,2%).
10. Sytuacje konfliktowe w obszarze wynikają głównie z postępującego rozwoju terenów zabudowy oraz niekontrolowanego wykorzystania terenów zieleni, zwłaszcza wzdłuż Wisły (co prowadzi do ich zaśmiecania lub dewastacji). Wzrost zainwestowania utrudnia powiązania przyrodnicze z terenami sąsiednimi oraz wewnętrz obszarach oraz prowadzi do zwiększenia zanieczyszczenia środowiska. Presja inwestycyjna jest problemem zwłaszcza wobec ustaleń obowiązującego mpzp, który dopuszcza lokalizowanie w obszarze obiektów mieszkaniowych o wysokości nawet 36 m.

12. Dla środowiska obszar istotna jest maksymalna możliwa ochrona istniejącej zieleni – w tym drzew znaczących w krajobrazie oraz większych grup drzew i krzewów w sąsiedztwie zabudowy. W szczególności dotyczy to zadrzewienia przy ul. Lasówka, którego zachowanie pożądane jest dla wzmocnienia lokalnych powiązań ekologicznych z terenami zieleni nad Wisłą. Ponadto istotne jest utrzymanie oraz dalsze kształtowanie ważnych powiązań przyrodniczych i funkcjonalnych – wewnątrz obszaru oraz z terenami sąsiednimi.

13. Podczas rozwoju zainwestowania należy dbać również o zachowanie odpowiednio wysokiego wskaźnika powierzchni biologicznie czynnej. W otoczeniu oraz uzupełnieniu istniejącej zabudowy mieszkaniowej jednorodzinnej wskazane jest zachowanie niskiej intensywności zabudowy.

14. Odnosząc terenów, które w obowiązującym Studium wskazuje się do zainwestowania zabudową mieszkaniową wielorodzinną oraz usługową o większym stopniu intensywności, wyodrębnia się dwa rejony, w których pożądane jest zachowanie wskaźnika pow. biologicznie czynnej na poziomie min. 50%. Uzasadnieniem ustalenia wyższego wskaźnika dla tych terenów jest utrzymanie w bezpośrednim sąsiedztwie terenów zieleni nad Wisłą w tym o wysokich walorach przyrodniczych, występujące zadrzewienia, a w przypadku rejonu przy ul. Lasówka położenie na przebiegu ważnych powiązań ekologicznych.

15. Przyszłe zagospodarowanie obszaru powinno także pozwolić na dalsze pełnienie przez obszar funkcji związanych z wymianą i regeneracją powietrza – dotyczy to przede wszystkim dostosowania gabarytów i intensywności zabudowy do uwarunkowań obszaru.